2019HDU多校第三场F Fansblog——威尔逊定理&&素数密度

时间:2023-03-09 16:31:02
2019HDU多校第三场F Fansblog——威尔逊定理&&素数密度

题意

给定一个整数 $P$($10^9 \leq p\leq 1^{14}$),设其前一个质数为 $Q$,求 $Q!  \ \% P$.

分析

暴力...说不定好的板子能过。

根据威尔逊定理,如果 $p$ 为质数,则有 $(p-1)! \equiv p-1(mod \ p)$.

$\displaystyle Q! = \frac{(P-1)!}{(Q+1)(Q+2)...(p-1)} \equiv  (p-1)*inv\ (mod \ P)$.

根据素数定理,$\displaystyle \pi (x) \sim \frac{x}{lnx}$,其中 $\pi (x)$ 表示不超过 $x$ 的素数的个数。直观的看,$x$ 越大,素数密度越大,接近线性。

在题给的范围,两个相邻素数通常只隔几十个数。

为了快速找到前一个质数,这里使用了Miller-Rabin素数测试算法(虽然题目 $\sqrt n$ 也能过

#include<bits/stdc++.h>
using namespace std; typedef long long int ll; ll mod_mul(ll a, ll b, ll mod)
{
ll res = ;
while (b)
{
if (b & )
res = (res + a) % mod;
a = (a + a) % mod;
b >>= ;
}
return res;
} ll mod_pow(ll a, ll n, ll mod)
{
ll res = ;
while (n)
{
if (n & )
res = mod_mul(res, a, mod);
a = mod_mul(a, a, mod);
n >>= ;
}
return res;
} // Miller-Rabin随机算法检测n是否为素数
bool Miller_Rabin(ll n)
{
if (n == )
return true;
if (n < || !(n & ))
return false;
ll m = n - , k = ;
while (!(m & ))
{
k++;
m >>= ;
}
for (int i = ; i <= ; i++) // 20为Miller-Rabin测试的迭代次数
{
ll a = rand() % (n - ) + ;
ll x = mod_pow(a, m, n);
ll y;
for (int j = ; j <= k; j++)
{
y = mod_mul(x, x, n);
if (y == && x != && x != n - )
return false;
x = y;
}
if (y != )
return false;
}
return true;
} ll mul(ll a, ll b, ll p)
{
ll res = ;
for(ll i = a;i <= b;i++) res = mod_mul(res, i, p);
return res;
} ll p, q;
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%lld", &p);
q = p-;
while(!Miller_Rabin(q)) q--;
ll inv = mod_pow(mul(q+, p-, p), p-, p);
ll ans = mod_mul(p-, inv, p);
printf("%lld\n", ans);
}
return ;
}