Intel DAAL AI加速——神经网络

时间:2023-03-09 15:57:23
Intel DAAL AI加速——神经网络
# file: neural_net_dense_batch.py
#===============================================================================
# Copyright 2014-2018 Intel Corporation.
#
# This software and the related documents are Intel copyrighted materials, and
# your use of them is governed by the express license under which they were
# provided to you (License). Unless the License provides otherwise, you may not
# use, modify, copy, publish, distribute, disclose or transmit this software or
# the related documents without Intel's prior written permission.
#
# This software and the related documents are provided as is, with no express
# or implied warranties, other than those that are expressly stated in the
# License.
#=============================================================================== #
# ! Content:
# ! Python example of neural network training and scoring
# !***************************************************************************** #
## <a name="DAAL-EXAMPLE-PY-NEURAL_NET_DENSE_BATCH"></a>
## \example neural_net_dense_batch.py
# import os
import sys import numpy as np from daal.algorithms.neural_networks import initializers
from daal.algorithms.neural_networks import layers
from daal.algorithms import optimization_solver
from daal.algorithms.neural_networks import training, prediction
from daal.data_management import NumericTable, HomogenNumericTable utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
if utils_folder not in sys.path:
sys.path.insert(0, utils_folder)
from utils import printTensors, readTensorFromCSV # Input data set parameters
trainDatasetFile = os.path.join("..", "data", "batch", "neural_network_train.csv")
trainGroundTruthFile = os.path.join("..", "data", "batch", "neural_network_train_ground_truth.csv")
testDatasetFile = os.path.join("..", "data", "batch", "neural_network_test.csv")
testGroundTruthFile = os.path.join("..", "data", "batch", "neural_network_test_ground_truth.csv") fc1 = 0
fc2 = 1
sm1 = 2 batchSize = 10 def configureNet():
# Create layers of the neural network
# Create fully-connected layer and initialize layer parameters
fullyConnectedLayer1 = layers.fullyconnected.Batch(5)
fullyConnectedLayer1.parameter.weightsInitializer = initializers.uniform.Batch(-0.001, 0.001)
fullyConnectedLayer1.parameter.biasesInitializer = initializers.uniform.Batch(0, 0.5) # Create fully-connected layer and initialize layer parameters
fullyConnectedLayer2 = layers.fullyconnected.Batch(2)
fullyConnectedLayer2.parameter.weightsInitializer = initializers.uniform.Batch(0.5, 1)
fullyConnectedLayer2.parameter.biasesInitializer = initializers.uniform.Batch(0.5, 1) # Create softmax layer and initialize layer parameters
softmaxCrossEntropyLayer = layers.loss.softmax_cross.Batch() # Create configuration of the neural network with layers
topology = training.Topology() # Add layers to the topology of the neural network
topology.push_back(fullyConnectedLayer1)
topology.push_back(fullyConnectedLayer2)
topology.push_back(softmaxCrossEntropyLayer)
topology.get(fc1).addNext(fc2)
topology.get(fc2).addNext(sm1)
return topology def trainModel():
# Read training data set from a .csv file and create a tensor to store input data
trainingData = readTensorFromCSV(trainDatasetFile)
trainingGroundTruth = readTensorFromCSV(trainGroundTruthFile, True) sgdAlgorithm = optimization_solver.sgd.Batch(fptype=np.float32) # Set learning rate for the optimization solver used in the neural network
learningRate = 0.001
sgdAlgorithm.parameter.learningRateSequence = HomogenNumericTable(1, 1, NumericTable.doAllocate, learningRate)
# Set the batch size for the neural network training
sgdAlgorithm.parameter.batchSize = batchSize
sgdAlgorithm.parameter.nIterations = int(trainingData.getDimensionSize(0) / sgdAlgorithm.parameter.batchSize) # Create an algorithm to train neural network
net = training.Batch(sgdAlgorithm) sampleSize = trainingData.getDimensions()
sampleSize[0] = batchSize # Configure the neural network
topology = configureNet()
net.initialize(sampleSize, topology) # Pass a training data set and dependent values to the algorithm
net.input.setInput(training.data, trainingData)
net.input.setInput(training.groundTruth, trainingGroundTruth) # Run the neural network training and retrieve training model
trainingModel = net.compute().get(training.model)
# return prediction model
return trainingModel.getPredictionModel_Float32() def testModel(predictionModel):
# Read testing data set from a .csv file and create a tensor to store input data
predictionData = readTensorFromCSV(testDatasetFile) # Create an algorithm to compute the neural network predictions
net = prediction.Batch() net.parameter.batchSize = predictionData.getDimensionSize(0) # Set input objects for the prediction neural network
net.input.setModelInput(prediction.model, predictionModel)
net.input.setTensorInput(prediction.data, predictionData) # Run the neural network prediction
# and return results of the neural network prediction
return net.compute() def printResults(predictionResult):
# Read testing ground truth from a .csv file and create a tensor to store the data
predictionGroundTruth = readTensorFromCSV(testGroundTruthFile) printTensors(predictionGroundTruth, predictionResult.getResult(prediction.prediction),
"Ground truth", "Neural network predictions: each class probability",
"Neural network classification results (first 20 observations):", 20) topology = ""
if __name__ == "__main__": predictionModel = trainModel() predictionResult = testModel(predictionModel) printResults(predictionResult)

  目前支持的Layers

    • Common Parameters
    • Fully Connected Forward Layer
    • Fully Connected Backward Layer
    • Absolute Value ForwardLayer
    • Absolute Value Backward Layer
    • Logistic ForwardLayer
    • Logistic BackwardLayer
    • pReLU ForwardLayer
    • pReLU BackwardLayer
    • ReLU Forward Layer
    • ReLU BackwardLayer
    • SmoothReLU ForwardLayer
    • SmoothReLU BackwardLayer
    • Hyperbolic Tangent Forward Layer
    • Hyperbolic Tangent Backward Layer
    • Batch Normalization Forward Layer
    • Batch Normalization Backward Layer
    • Local-Response Normalization ForwardLayer
    • Local-Response Normalization Backward Layer
    • Local-Contrast Normalization ForwardLayer
    • Local-Contrast Normalization Backward Layer
    • Dropout ForwardLayer
    • Dropout BackwardLayer
    • 1D Max Pooling Forward Layer
    • 1D Max Pooling Backward Layer
    • 2D Max Pooling Forward Layer
    • 2D Max Pooling Backward Layer
    • 3D Max Pooling Forward Layer
    • 3D Max Pooling Backward Layer
    • 1D Average Pooling Forward Layer
    • 1D Average Pooling Backward Layer
    • 2D Average Pooling Forward Layer
    • 2D Average Pooling Backward Layer
    • 3D Average Pooling Forward Layer
    • 3D Average Pooling Backward Layer
    • 2D Stochastic Pooling Forward Layer
    • 2D Stochastic Pooling Backward Layer
    • 2D Spatial Pyramid Pooling ForwardLayer
    • 2D Spatial Pyramid Pooling BackwardLayer
    • 2D Convolution Forward Layer
    • 2D Convolution Backward Layer
    • 2D Transposed Convolution ForwardLayer
    • 2D Transposed Convolution BackwardLayer
    • 2D Locally-connected Forward Layer
    • 2D Locally-connected Backward Layer
    • Reshape ForwardLayer
    • Reshape BackwardLayer
    • Concat ForwardLayer
    • Concat BackwardLayer
    • Split Forward Layer
    • Split Backward Layer
    • Softmax ForwardLayer
    • Softmax BackwardLayer
    • Loss Forward Layer
    • Loss Backward Layer
    • Loss Softmax Cross-entropy ForwardLayer
    • Loss Softmax Cross-entropy BackwardLayer
    • Loss Logistic Cross-entropy ForwardLayer
    • Loss Logistic Cross-entropy BackwardLayer
    • Exponential Linear Unit Forward Layer
    • Exponential Linear Unit Backward Layer