为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明可以通过这个通道由A房间到达B房间,但并不说明通过它可以由B房间到达A房间。Gardon需要请你写个程序确认一下是否任意两个房间都是相互连通的,即:对于任意的i和j,至少存在一条路径可以从房间i到房间j,也存在一条路径可以从房间j到房间i。
Input
输入包含多组数据,输入的第一行有两个数:N和M,接下来的M行每行有两个数a和b,表示了一条通道可以从A房间来到B房间。文件最后以两个0结束。
Output
对于输入的每组数据,如果任意两个房间都是相互连接的,输出"Yes",否则输出"No"。
Sample Input
3 3
1 2
2 3
3 1
3 3
1 2
2 3
3 2
0 0
Sample Output
Yes
No 题目大意:一个有向图,有n个点和m条边。判断整个图是否强连通,如果是,输出Yes,否则输出No。
题目可以用Kosaraju算法和Tarjan算法。
详解来自于:《算法竞赛 入门到进阶》
Kosaraju算法:
Kosaraju算法用到了“反图”的技术,基于下面两个原理:
(1)一个有向图G,把G所有的边反向,建立反图rG,反图rG不会改变原图G的强连通性。也就是说,图G的SCC数量与rG的SCC(强联通分量)数量相同。
(2)对原图G和反图rG各做一次DFS,可以确定SCC数量。 代码:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#pragma GCC optimize(2)
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<queue>
#include<set>
#include<cmath>
#include<string>
#include<map>
#include<vector>
#include<ctime>
#include<stack>
using namespace std;
#define mm(a,b) memset(a,b,sizeof(a))
typedef long long ll;
const long long mod = 1e9+;
const int maxn = 1e4+;
const int inf = 0x3f3f3f3f;
vector<int>G[maxn],rG[maxn];
vector<int>S;//存第一次dfs1的结果:标记点的先后顺序
int vis[maxn],sccno[maxn],cnt;//cnt为连通分量的个数 void dfs1(int u)
{
if(vis[u]) return;
vis[u]=;
for(int i=;i<G[u].size();i++) dfs1(G[u][i]);
S.push_back(u);//标记点的先后顺序,标记大的放在S的后面
} void dfs2(int u)
{
if(sccno[u]) return;
sccno[u]=cnt;
for(int i=;i<rG[u].size();i++) dfs2(rG[u][i]);
} void Kosaraju(int n)
{
cnt=;
S.clear();
mm(sccno,);
mm(vis,);
for(int i=;i<=n;i++) dfs1(i); //点的编号:1~n递归所有点
for(int i=n-;i>=;i--)
if(!sccno[S[i]])
{
cnt++;
dfs2(S[i]);
}
} int main()
{
int n,m,u,v;
while(scanf("%d %d",&n,&m),n||m)
{
for(int i=;i<n;i++)
{
G[i].clear();
rG[i].clear();
}
for(int i=;i<m;i++)
{
scanf("%d %d",&u,&v);
G[u].push_back(v);
rG[v].push_back(u);
}
Kosaraju(n);
if(cnt==) printf("Yes\n");
else printf("No\n");
}
return ;
}
Tarjan算法
上面的Kosaraju算法,其做法是从图中一个个地把SCC“挖”出来。Tarjan算法能在DFS中把所有点都按SCC分开。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#pragma GCC optimize(2)
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<queue>
#include<set>
#include<cmath>
#include<string>
#include<map>
#include<vector>
#include<ctime>
#include<stack>
using namespace std;
#define mm(a,b) memset(a,b,sizeof(a))
typedef long long ll;
const long long mod = 1e9+;
const int maxn = 1e4+;
const int inf = 0x3f3f3f3f;
int cnt; //强连通分量的个数
int low[maxn],num[maxn],dfn;
int sccno[maxn];
stack<int>st;
vector<int>G[maxn]; void dfs(int u)
{
st.push(u);
low[u]=num[u]=++dfn;
for(int i=;i<G[u].size();i++)
{
int v=G[u][i];
if(!num[v]) //未访问过的点,继续DFS
{
dfs(v); //DFS的最底层,是最后一个SCC
low[u]=min(low[v],low[u]);
}
else if(!sccno[v]) //处理回退边
low[u]=min(low[u],num[v]);
}
if(low[u]==num[u]) //栈底的点是SCC的祖先,它的low=num
{
cnt++;
while()
{
int v=st.top(); //v弹出栈
st.pop();
sccno[v]=cnt;
if(u==v) break; //栈底的点是SCC的祖先
}
}
} void Tarjan(int n)
{
cnt=dfn=;
mm(sccno,);
mm(num,);
mm(low,);
for(int i=;i<=n;i++)
if(!num[i])
dfs(i);
} int main()
{
int n,m,u,v;
while(scanf("%d %d",&n,&m),n||m)
{
for(int i=;i<=n;i++) G[i].clear();
for(int i=;i<m;i++)
{
scanf("%d %d",&u,&v);
G[u].push_back(v);
}
Tarjan(n);
if(cnt==) printf("Yes\n");
else printf("No\n");
}
return ;
}