Android应用程序框架层和系统运行库层日志系统源代码分析

时间:2021-07-31 14:00:12

        在开发Android应用程序时,少不了使用Log来监控和调试程序的执行。在上一篇文章Android日志系统驱动程序Logger源代码分析中,我们分析了驱动程序Logger的源代码,在前面的文章浅谈Android系统开发中Log的使用一文,我们也简单介绍在应用程序中使Log的方法,在这篇文章中,我们将详细介绍Android应用程序框架层和系统运行库存层日志系统的源代码,使得我们可以更好地理解Android的日志系统的实现。

《Android系统源代码情景分析》一书正在进击的程序员网(http://0xcc0xcd.com)中连载,点击进入!

        我们在Android应用程序,一般是调用应用程序框架层的Java接口(android.util.Log)来使用日志系统,这个Java接口通过JNI方法和系统运行库最终调用内核驱动程序Logger把Log写到内核空间中。按照这个调用过程,我们一步步介绍Android应用程序框架层日志系统的源代码。学习完这个过程之后,我们可以很好地理解Android系统的架构,即应用程序层(Application)的接口是如何一步一步地调用到内核空间的。

        一. 应用程序框架层日志系统Java接口的实现。

        在浅谈Android系统开发中Log的使用一文中,我们曾经介绍过Android应用程序框架层日志系统的源代码接口。这里,为了描述方便和文章的完整性,我们重新贴一下这部份的代码,在frameworks/base/core/java/android/util/Log.java文件中,实现日志系统的Java接口:

................................................
public final class Log {

................................................

/**
* Priority constant for the println method; use Log.v.
*/
public static final int VERBOSE = 2;

/**
* Priority constant for the println method; use Log.d.
*/
public static final int DEBUG = 3;

/**
* Priority constant for the println method; use Log.i.
*/
public static final int INFO = 4;

/**
* Priority constant for the println method; use Log.w.
*/
public static final int WARN = 5;

/**
* Priority constant for the println method; use Log.e.
*/
public static final int ERROR = 6;

/**
* Priority constant for the println method.
*/
public static final int ASSERT = 7;

.....................................................

public static int v(String tag, String msg) {
return println_native(LOG_ID_MAIN, VERBOSE, tag, msg);
}

public static int v(String tag, String msg, Throwable tr) {
return println_native(LOG_ID_MAIN, VERBOSE, tag, msg + '\n' + getStackTraceString(tr));
}

public static int d(String tag, String msg) {
return println_native(LOG_ID_MAIN, DEBUG, tag, msg);
}

public static int d(String tag, String msg, Throwable tr) {
return println_native(LOG_ID_MAIN, DEBUG, tag, msg + '\n' + getStackTraceString(tr));
}

public static int i(String tag, String msg) {
return println_native(LOG_ID_MAIN, INFO, tag, msg);
}

public static int i(String tag, String msg, Throwable tr) {
return println_native(LOG_ID_MAIN, INFO, tag, msg + '\n' + getStackTraceString(tr));
}

public static int w(String tag, String msg) {
return println_native(LOG_ID_MAIN, WARN, tag, msg);
}

public static int w(String tag, String msg, Throwable tr) {
return println_native(LOG_ID_MAIN, WARN, tag, msg + '\n' + getStackTraceString(tr));
}

public static int w(String tag, Throwable tr) {
return println_native(LOG_ID_MAIN, WARN, tag, getStackTraceString(tr));
}

public static int e(String tag, String msg) {
return println_native(LOG_ID_MAIN, ERROR, tag, msg);
}

public static int e(String tag, String msg, Throwable tr) {
return println_native(LOG_ID_MAIN, ERROR, tag, msg + '\n' + getStackTraceString(tr));
}

..................................................................
/** @hide */ public static native int LOG_ID_MAIN = 0;
/** @hide */ public static native int LOG_ID_RADIO = 1;
/** @hide */ public static native int LOG_ID_EVENTS = 2;
/** @hide */ public static native int LOG_ID_SYSTEM = 3;

/** @hide */ public static native int println_native(int bufID,
int priority, String tag, String msg);
}
         定义了2~7一共6个日志优先级别ID和4个日志缓冲区ID。回忆一下 Android日志系统驱动程序Logger源代码分析一文,在Logger驱动程序模块中,定义了log_main、log_events和log_radio三个日志缓冲区,分别对应三个设备文件/dev/log/main、/dev/log/events和/dev/log/radio。这里的4个日志缓冲区的前面3个ID就是对应这三个设备文件的文件描述符了,在下面的章节中,我们将看到这三个文件描述符是如何创建的。在下载下来的Android内核源代码中,第4个日志缓冲区LOG_ID_SYSTEM并没有对应的设备文件,在这种情况下,它和LOG_ID_MAIN对应同一个缓冲区ID,在下面的章节中,我们同样可以看到这两个ID是如何对应到同一个设备文件的。

         在整个Log接口中,最关键的地方声明了println_native本地方法,所有的Log接口都是通过调用这个本地方法来实现Log的定入。下面我们就继续分析这个本地方法println_native。

         二. 应用程序框架层日志系统JNI方法的实现。

         在frameworks/base/core/jni/android_util_Log.cpp文件中,实现JNI方法println_native:

/* //device/libs/android_runtime/android_util_Log.cpp**** Copyright 2006, The Android Open Source Project**** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ****     http://www.apache.org/licenses/LICENSE-2.0 **** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License.*/#define LOG_NAMESPACE "log.tag."#define LOG_TAG "Log_println"#include <assert.h>#include <cutils/properties.h>#include <utils/Log.h>#include <utils/String8.h>#include "jni.h"#include "utils/misc.h"#include "android_runtime/AndroidRuntime.h"#define MIN(a,b) ((a<b)?a:b)namespace android {struct levels_t {    jint verbose;    jint debug;    jint info;    jint warn;    jint error;    jint assert;};static levels_t levels;static int toLevel(const char* value) {    switch (value[0]) {        case 'V': return levels.verbose;        case 'D': return levels.debug;        case 'I': return levels.info;        case 'W': return levels.warn;        case 'E': return levels.error;        case 'A': return levels.assert;        case 'S': return -1; // SUPPRESS    }    return levels.info;}static jboolean android_util_Log_isLoggable(JNIEnv* env, jobject clazz, jstring tag, jint level){#ifndef HAVE_ANDROID_OS    return false;#else /* HAVE_ANDROID_OS */    int len;    char key[PROPERTY_KEY_MAX];    char buf[PROPERTY_VALUE_MAX];    if (tag == NULL) {        return false;    }        jboolean result = false;        const char* chars = env->GetStringUTFChars(tag, NULL);    if ((strlen(chars)+sizeof(LOG_NAMESPACE)) > PROPERTY_KEY_MAX) {        jclass clazz = env->FindClass("java/lang/IllegalArgumentException");        char buf2[200];        snprintf(buf2, sizeof(buf2), "Log tag \"%s\" exceeds limit of %d characters\n",                chars, PROPERTY_KEY_MAX - sizeof(LOG_NAMESPACE));        // release the chars!        env->ReleaseStringUTFChars(tag, chars);        env->ThrowNew(clazz, buf2);        return false;    } else {        strncpy(key, LOG_NAMESPACE, sizeof(LOG_NAMESPACE)-1);        strcpy(key + sizeof(LOG_NAMESPACE) - 1, chars);    }        env->ReleaseStringUTFChars(tag, chars);    len = property_get(key, buf, "");    int logLevel = toLevel(buf);    return (logLevel >= 0 && level >= logLevel) ? true : false;#endif /* HAVE_ANDROID_OS */}/* * In class android.util.Log: *  public static native int println_native(int buffer, int priority, String tag, String msg) */static jint android_util_Log_println_native(JNIEnv* env, jobject clazz,        jint bufID, jint priority, jstring tagObj, jstring msgObj){    const char* tag = NULL;    const char* msg = NULL;    if (msgObj == NULL) {        jclass npeClazz;        npeClazz = env->FindClass("java/lang/NullPointerException");        assert(npeClazz != NULL);        env->ThrowNew(npeClazz, "println needs a message");        return -1;    }    if (bufID < 0 || bufID >= LOG_ID_MAX) {        jclass npeClazz;        npeClazz = env->FindClass("java/lang/NullPointerException");        assert(npeClazz != NULL);        env->ThrowNew(npeClazz, "bad bufID");        return -1;    }    if (tagObj != NULL)        tag = env->GetStringUTFChars(tagObj, NULL);    msg = env->GetStringUTFChars(msgObj, NULL);    int res = __android_log_buf_write(bufID, (android_LogPriority)priority, tag, msg);    if (tag != NULL)        env->ReleaseStringUTFChars(tagObj, tag);    env->ReleaseStringUTFChars(msgObj, msg);    return res;}/* * JNI registration. */static JNINativeMethod gMethods[] = {    /* name, signature, funcPtr */    { "isLoggable",      "(Ljava/lang/String;I)Z", (void*) android_util_Log_isLoggable },    { "println_native",  "(IILjava/lang/String;Ljava/lang/String;)I", (void*) android_util_Log_println_native },};int register_android_util_Log(JNIEnv* env){    jclass clazz = env->FindClass("android/util/Log");    if (clazz == NULL) {        LOGE("Can't find android/util/Log");        return -1;    }        levels.verbose = env->GetStaticIntField(clazz, env->GetStaticFieldID(clazz, "VERBOSE", "I"));    levels.debug = env->GetStaticIntField(clazz, env->GetStaticFieldID(clazz, "DEBUG", "I"));    levels.info = env->GetStaticIntField(clazz, env->GetStaticFieldID(clazz, "INFO", "I"));    levels.warn = env->GetStaticIntField(clazz, env->GetStaticFieldID(clazz, "WARN", "I"));    levels.error = env->GetStaticIntField(clazz, env->GetStaticFieldID(clazz, "ERROR", "I"));    levels.assert = env->GetStaticIntField(clazz, env->GetStaticFieldID(clazz, "ASSERT", "I"));                    return AndroidRuntime::registerNativeMethods(env, "android/util/Log", gMethods, NELEM(gMethods));}}; // namespace android
        在gMethods变量中,定义了println_native本地方法对应的函数调用是android_util_Log_println_native。在android_util_Log_println_native函数中,通过了各项参数验证正确后,就调用运行时库函数__android_log_buf_write来实现Log的写入操作。__android_log_buf_write函实实现在liblog库中,它有4个参数,分别缓冲区ID、优先级别ID、Tag字符串和Msg字符串。下面运行时库liblog中的__android_log_buf_write的实现。

       三. 系统运行库层日志系统的实现。

       在系统运行库层liblog库的实现中,内容比较多,这里,我们只关注日志写入操作__android_log_buf_write的相关实现:

int __android_log_buf_write(int bufID, int prio, const char *tag, const char *msg){    struct iovec vec[3];    if (!tag)        tag = "";    /* XXX: This needs to go! */    if (!strcmp(tag, "HTC_RIL") ||        !strncmp(tag, "RIL", 3) || /* Any log tag with "RIL" as the prefix */        !strcmp(tag, "AT") ||        !strcmp(tag, "GSM") ||        !strcmp(tag, "STK") ||        !strcmp(tag, "CDMA") ||        !strcmp(tag, "PHONE") ||        !strcmp(tag, "SMS"))            bufID = LOG_ID_RADIO;    vec[0].iov_base   = (unsigned char *) &prio;    vec[0].iov_len    = 1;    vec[1].iov_base   = (void *) tag;    vec[1].iov_len    = strlen(tag) + 1;    vec[2].iov_base   = (void *) msg;    vec[2].iov_len    = strlen(msg) + 1;    return write_to_log(bufID, vec, 3);}

        函数首先是检查传进来的tag参数是否是为HTC_RIL、RIL、AT、GSM、STK、CDMA、PHONE和SMS中的一个,如果是,就无条件地使用ID为LOG_ID_RADIO的日志缓冲区作为写入缓冲区,接着,把传进来的参数prio、tag和msg分别存放在一个向量数组中,调用write_to_log函数来进入下一步操作。write_to_log是一个函数指针,定义在文件开始的位置上:

static int __write_to_log_init(log_id_t, struct iovec *vec, size_t nr);static int (*write_to_log)(log_id_t, struct iovec *vec, size_t nr) = __write_to_log_init;
        并且初始化为__write_to_log_init函数:

static int __write_to_log_init(log_id_t log_id, struct iovec *vec, size_t nr){#ifdef HAVE_PTHREADS    pthread_mutex_lock(&log_init_lock);#endif    if (write_to_log == __write_to_log_init) {        log_fds[LOG_ID_MAIN] = log_open("/dev/"LOGGER_LOG_MAIN, O_WRONLY);        log_fds[LOG_ID_RADIO] = log_open("/dev/"LOGGER_LOG_RADIO, O_WRONLY);        log_fds[LOG_ID_EVENTS] = log_open("/dev/"LOGGER_LOG_EVENTS, O_WRONLY);        log_fds[LOG_ID_SYSTEM] = log_open("/dev/"LOGGER_LOG_SYSTEM, O_WRONLY);        write_to_log = __write_to_log_kernel;        if (log_fds[LOG_ID_MAIN] < 0 || log_fds[LOG_ID_RADIO] < 0 ||                log_fds[LOG_ID_EVENTS] < 0) {            log_close(log_fds[LOG_ID_MAIN]);            log_close(log_fds[LOG_ID_RADIO]);            log_close(log_fds[LOG_ID_EVENTS]);            log_fds[LOG_ID_MAIN] = -1;            log_fds[LOG_ID_RADIO] = -1;            log_fds[LOG_ID_EVENTS] = -1;            write_to_log = __write_to_log_null;        }        if (log_fds[LOG_ID_SYSTEM] < 0) {            log_fds[LOG_ID_SYSTEM] = log_fds[LOG_ID_MAIN];        }    }#ifdef HAVE_PTHREADS    pthread_mutex_unlock(&log_init_lock);#endif    return write_to_log(log_id, vec, nr);}
        这里我们可以看到,如果是第一次调write_to_log函数,write_to_log == __write_to_log_init判断语句就会true,于是执行log_open函数打开设备文件,并把文件描述符保存在log_fds数组中。如果打开/dev/LOGGER_LOG_SYSTEM文件失败,即log_fds[LOG_ID_SYSTEM] < 0,就把log_fds[LOG_ID_SYSTEM]设置为log_fds[LOG_ID_MAIN],这就是我们上面描述的如果不存在ID为LOG_ID_SYSTEM的日志缓冲区,就把LOG_ID_SYSTEM设置为和LOG_ID_MAIN对应的日志缓冲区了。LOGGER_LOG_MAIN、LOGGER_LOG_RADIO、LOGGER_LOG_EVENTS和LOGGER_LOG_SYSTEM四个宏定义在system/core/include/cutils/logger.h文件中:

#define LOGGER_LOG_MAIN"log/main"#define LOGGER_LOG_RADIO"log/radio"#define LOGGER_LOG_EVENTS"log/events"#define LOGGER_LOG_SYSTEM"log/system"
        接着,把write_to_log函数指针指向__write_to_log_kernel函数:

static int __write_to_log_kernel(log_id_t log_id, struct iovec *vec, size_t nr){    ssize_t ret;    int log_fd;    if (/*(int)log_id >= 0 &&*/ (int)log_id < (int)LOG_ID_MAX) {        log_fd = log_fds[(int)log_id];    } else {        return EBADF;    }    do {        ret = log_writev(log_fd, vec, nr);    } while (ret < 0 && errno == EINTR);    return ret;}
       函数调用log_writev来实现Log的写入,注意,这里通过一个循环来写入Log,直到写入成功为止。这里log_writev是一个宏,在文件开始的地方定义为:

#if FAKE_LOG_DEVICE// This will be defined when building for the host.#define log_open(pathname, flags) fakeLogOpen(pathname, flags)#define log_writev(filedes, vector, count) fakeLogWritev(filedes, vector, count)#define log_close(filedes) fakeLogClose(filedes)#else#define log_open(pathname, flags) open(pathname, flags)#define log_writev(filedes, vector, count) writev(filedes, vector, count)#define log_close(filedes) close(filedes)#endif
       这里,我们看到,一般情况下,log_writev就是writev了,这是个常见的批量文件写入函数,就不多说了。

       至些,整个调用过程就结束了。总结一下,首先是从应用程序层调用应用程序框架层的Java接口,应用程序框架层的Java接口通过调用本层的JNI方法进入到系统运行库层的C接口,系统运行库层的C接口通过设备文件来访问内核空间层的Logger驱动程序。这是一个典型的调用过程,很好地诠释Android的系统架构,希望读者好好领会。

老罗的新浪微博:http://weibo.com/shengyangluo,欢迎关注!