题面
思路
首先,这个题目显然可以从所有小的点往大的连边,然后如果没环就一定可行,从起点(入读为0)开始构造就好了
但是问题来了,如果每个都连的话,本题中边数是$O(n^2)$级别的,显然会挂
发现两条性质:
1.所有的限制条件中,给定的总点数不超过3e5个
2.是一个点比一段区间大
第二个条件决定了我们可以利用线段树优化建图,而第一个条件告诉了我们,本题的总边数应该是$sumk\astlog_2n$级别的
那么就做完了
注意拓扑排序的时候有个技巧,把连向实际的点的有向边边权标1,其他标0,这样方便处理
Code
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cassert>
#define ll long long
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-') flag=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
int n,m,s,first[1000010],ans[1000010],cnte,pos[1000010],cnt=0,in[1000010],is[1000010],isn[1000010];
struct edge{
int to,next,w;
}a[8000010];
inline void add(int u,int v,int w){
in[v]++;
a[++cnte]=(edge){v,first[u],w};first[u]=cnte;
}
int q[1000010],dp[1000010];
namespace seg{
int ch[400010][2];
int build(int l,int r){
int cur=++cnt;is[cur]=1;
if(l==r){
isn[cur]=1;
return pos[l]=cur;
}
int mid=(l+r)>>1;
ch[cur][0]=build(l,mid);
ch[cur][1]=build(mid+1,r);
add(ch[cur][0],cur,0);
add(ch[cur][1],cur,0);
return cur;
}
void change(int l,int r,int ql,int qr,int cur,int ori){
if(ql>qr) return;
if(l>=ql&&r<=qr){
add(cur,ori,1);return;
}
int mid=(l+r)>>1;
if(mid>=ql) change(l,mid,ql,qr,ch[cur][0],ori);
if(mid<qr) change(mid+1,r,ql,qr,ch[cur][1],ori);
}
}
void topo(){
int i,u,v,head=0,tail=0,tot=0;
for(i=1;i<=cnt;i++) if(!in[i]){
q[tail++]=i;dp[i]=1;
}
while(head<tail){
u=q[head++];tot+=isn[u];
if(dp[u]>1e9){
puts("NIE");return;
}
if((!is[u])&&(dp[u]>ans[u])){
puts("NIE");return;
}
if((!is[u])&&(dp[u]<ans[u])) dp[u]=ans[u];
for(i=first[u];~i;i=a[i].next){
v=a[i].to;
if(dp[v]<dp[u]+a[i].w){
dp[v]=dp[u]+a[i].w;
}
if(!(--in[v])) q[tail++]=v;
}
}
if(tot<n){
puts("NIE");return;
}
puts("TAK");
for(i=1;i<=n;i++) printf("%d ",dp[pos[i]]);
}
int main(){
memset(first,-1,sizeof(first));
n=read();s=read();m=read();int i,j,t1,t2,t3;
memset(ans,63,sizeof(ans));
int root=seg::build(1,n);
for(i=1;i<=s;i++){
t1=read();t2=read();
ans[pos[t1]]=t2;is[pos[t1]]=0;
}
for(i=1;i<=m;i++){
t1=read();t2=read();t3=read();
cnt++;is[cnt]=1;
for(j=1;j<=t3;j++) q[j]=read(),add(cnt,pos[q[j]],0);
seg::change(1,n,t1,q[1]-1,root,cnt);
seg::change(1,n,q[t3]+1,t2,root,cnt);
for(j=1;j<t3;j++) seg::change(1,n,q[j]+1,q[j+1]-1,root,cnt);
}
topo();
}
[POI2015][bzoj4383] Pustynia [线段树优化建图+拓扑排序]的更多相关文章
-
BZOJ_4383_[POI2015]Pustynia_线段树优化建图+拓扑排序
BZOJ_4383_[POI2015]Pustynia_线段树优化建图+拓扑排序 Description 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息 ...
-
BZOJ4383 [POI2015]Pustynia[线段树优化建边+拓扑排序+差分约束]
收获挺大的一道题. 这里的限制大小可以做差分约束,从$y\to x$连$1$,表示$y\le x-1$即$y<x$,然后跑最长路求解. 但是,如果这样每次$k+1$个小区间每个点都向$k$个断点 ...
-
牛客多校第四场 J.Hash Function(线段树优化建图+拓扑排序)
题目传送门:https://www.nowcoder.com/acm/contest/142/J 题意:给一个hash table,求出字典序最小的插入序列,或者判断不合法. 分析: eg.对于序列{ ...
-
【bzoj4383】[POI2015]Pustynia 线段树优化建图+差分约束系统+拓扑排序
题目描述 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息,每条信息包含三个数l,r,k以及接下来k个正整数,表示a[l],a[l+1],...,a[r- ...
-
洛谷P3588 [POI2015]PUS(线段树优化建图)
题面 传送门 题解 先考虑暴力怎么做,我们把所有\(r-l+1-k\)中的点向\(x\)连有向边,表示\(x\)必须比它们大,那么如果这张图有环显然就无解了,否则的话我们跑一个多源最短路,每个点的\( ...
-
[bzoj5017][Snoi2017]炸弹 tarjan缩点+线段树优化建图+拓扑
5017: [Snoi2017]炸弹 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 608 Solved: 190[Submit][Status][ ...
-
BZOJ 5496: [2019省队联测]字符串问题 (后缀数组+主席树优化建图+拓扑排序)
题意 略 分析 考场上写了暴力建图40分溜了-(结果只得了30分) 然后只要优化建边就行了 首先给出的支配关系无法优化,就直接A向它支配的B连边. 考虑B向以B作为前缀的所有A连边,做一遍后缀数组,两 ...
-
BZOJ5017 [SNOI2017]炸弹 - 线段树优化建图+Tarjan
Solution 一个点向一个区间内的所有点连边, 可以用线段树优化建图来优化 : 前置技能传送门 然后就得到一个有向图, 一个联通块内的炸弹可以互相引爆, 所以进行缩点变成$DAG$ 然后拓扑排序. ...
-
【BZOJ3681】Arietta 树链剖分+可持久化线段树优化建图+网络流
[BZOJ3681]Arietta Description Arietta 的命运与她的妹妹不同,在她的妹妹已经走进学院的时候,她仍然留在山村中.但是她从未停止过和恋人 Velding 的书信往来.一 ...
随机推荐
-
C++设计模式——简单工厂模式
简单工厂模式(Simple Factory Pattern) 介绍:简单工厂模式不能说是一个设计模式,说它是一种编程习惯可能更恰当些.因为它至少不是Gof23种设计模式之一.但它在实际的编程中经常被用 ...
-
KPI
一.综合计划部KPI明细数据查询--xigu用户要求:需显示第三季度,即789三个月的明细数据解决方法:1.查看SSISC:\Users\Administrator\Documents\Visual ...
-
ajax的参数
http://www.w3school.com.cn/jquery/ajax_ajax.asp call.addAllremark = function(data){ $.ajax({ url:cal ...
-
mybatis杂记
mybatis学习官网: 1.如果项目中使用maven管理,又引用 了mybatis框架, 下面是mybatis官网给出的 mybatis在maven*仓库的坐标原文 详情见连接:https://c ...
-
poj 3518 Corporate Identity 后缀数组->;多字符串最长相同连续子串
题目链接 题意:输入N(2 <= N <= 4000)个长度不超过200的字符串,输出字典序最小的最长公共连续子串; 思路:将所有的字符串中间加上分隔符,注:分隔符只需要和输入的字符不同, ...
-
Zookeeper3.4.6部署伪分布集群(Apache)
1.下载Zookeeper http://mirrors.cnnic.cn/apache/zookeeper/zookeeper-3.4.6/ 2.创建/usr/app/zookeeper目录,并切换 ...
-
mysql之索引方面的知识点总结
索引的类型: 普通索引:这是最基本的索引类型,没唯一性之类的限制. 唯一性索引:和普通索引基本相同,但所有的索引列只能出现一次,保持唯一性. 主键:主键是一种唯一索引,但必须指定为"PRIM ...
-
如何在web项目中添加javamelody monitoring 监控。
1.在工程的maven pom中添加依赖javamelody-core <!-- monitoring监控 --><!-- https://mvnrepository.com/art ...
-
Oracle 12c 安装问题及解决方案
1. 介绍 今天在我的开发电脑上安装Oracle12c,电脑环境是windows10家庭中文版,安装的Oracle数据库版本Oracle(12.1.0.2.0) - Standard Edition ...
-
让织梦内容页arclist标签的当前文章标题加亮显示
很多人在用织梦做站的时候,会用到在当前栏目页面,给当前栏目标题使用指定样式如标题加亮,或者放个背景图.这是一个很常用和实用的功能,比如在导航页面,标识当前在浏览哪个栏目.如下图: 但是有些时候,我们在 ...