本文参考了侯捷的 《STL 源码分析》一书,出于兴趣,自行实现了简单的 vector 容器。
之后会陆续上传 list, deque 等容器的代码,若有错误,欢迎留言指出。
vector 容易实现的几点注意事项:
1. 由于vector 是动态数组。
出于效率的考虑,在往vector 中加入元素时,内存的扩展遵循的规则是:
1> 如果当前可用内存不够,开 2倍大的内存,将原来的数组复制到新数组中,撤销原来的数组。
2> 加入新的元素
2. 通常当我们 int *p = new int(1)时, new 其实做了两件事情: 1> 分配内存 2>在分配的内存中调用类的构造函数。
出于效率的考虑,在 vector 的内存管理中,我们将这两个操作分开。
C++ 提供了 模板类 allocator 来实现上述的功能。
3. vector 中三个指针,分别是 start, finish, end_of_storage;
[start, finish) 就是数组元素;
[finish, end_of_storage) 是预先分配的空间(还没有调用构造函数)
参考书籍:
1. C++ primer, Lippman
2. STL 源码分析, 侯捷
// Last Update:2014-04-11 15:44:44
/**
* @file vector.h
* @brief a simple vector class
* @author shoulinjun@126.com
* @version 0.1.00
* @date 2014-04-09
*/ #ifndef MY_VECTOR_H
#define MY_VECTOR_H #include <iostream>
#include <algorithm>
#include <memory> template<class T>
void destroy(T* pointer)
{
pointer->~T();
} template<class ForwardIterator>
void destroy(ForwardIterator first, ForwardIterator last)
{
for(ForwardIterator it = first; it != last; ++ it)
{
destroy(&*it);
}
} template<class T>
class MyVector
{
public:
typedef T value_type;
typedef T* iterator;
typedef const T*const_iterator;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef size_t size_type; MyVector();
MyVector(size_type n, T value = T());
MyVector(iterator begin, iterator end);
~MyVector(); //copy control
MyVector(const MyVector&);
MyVector& operator=(const MyVector&); bool empty() const { return begin() == end(); }
size_type size() const {return (size_type)(finish - start);}
size_type capacity() const {return (size_type)(end_of_storage - start);} iterator begin() { return start; }
const_iterator begin() const{ return start; }
iterator end() { return finish;}
const_iterator end() const{ return finish; } reference operator[](size_type i){return *(start + i);}
const_reference operator[](size_type i)const {return *(start + i);} void insert(iterator position, size_type n, const T& value);
void push_back(const T& value);
void pop_back(); void erase(iterator first, iterator last);
void clear(); void reserve(size_type n);
protected:
iterator start; //空间的头
iterator finish; //空间的尾
iterator end_of_storage; //可用空间的尾巴
private:
static std::allocator<T> alloc; // object to get raw memory
}; // static class member needed to be defined outside of class
template<class T>
std::allocator<T> MyVector<T>::alloc; // default constructor
template<class T>
MyVector<T>::MyVector()
: start(NULL), finish(NULL), end_of_storage(NULL)
{
} template<class T>
MyVector<T>::MyVector(size_type n, T value)
{
start = alloc.allocate(n);
end_of_storage = finish = start + n; for(iterator i=start; i!=finish; ++i)
alloc.construct(i, value);
} template<class T>
MyVector<T>::MyVector(iterator begin, iterator end)
{
const size_type n = end - begin;
/* allocate space */
start = alloc.allocate(n);
finish = end_of_storage = start + n; /* call constructor */
std::uninitialized_copy(begin, end, start);
} template<class T>
MyVector<T>::~MyVector()
{
/* call destructor */
::destroy(start, finish); /* free space */
alloc.deallocate(start, end_of_storage - start);
} // copy control
template<class T>
MyVector<T>::MyVector(const MyVector& rhs)
{
start = alloc.allocate(rhs.capacity());
std::uninitialized_copy(rhs.start, rhs.finish, start);
finish = start + (rhs.finish - rhs.start);
end_of_storage = start + (rhs.end_of_storage - rhs.start);
} template<class T>
MyVector<T>& MyVector<T>::operator=(const MyVector& rhs)
{
start = alloc.allocate(rhs.capacity());
std::uninitialized_copy(rhs.start, rhs.finish, start);
finish = start + rhs.finish - rhs.start;
end_of_storage = start + rhs.end_of_storage - rhs.start; return *this;
} template<class T>
void MyVector<T>::insert(iterator position, size_type n, const T& value)
{
if(n <= end_of_storage - finish)
{/* enough memory */
if(n <= finish - position)
{
std::uninitialized_copy(finish-n, finish, finish);
std::copy(position, finish-n, position+n);
std::fill_n(position, n, value);
}
else
{
std::uninitialized_fill_n(finish, n - (finish - position), value);
std::uninitialized_copy(position, finish, position + n);
std::fill(position, finish, value);
}
finish += n;
}
else
{/* reallocate */
pointer new_start(NULL), new_finish(NULL);
size_type old_type = end_of_storage - start;
size_type new_size = old_type + std::max(old_type, n);
new_start = alloc.allocate(new_size); // copy old vector to new vector
new_finish = std::uninitialized_copy(start, position, new_start);
std::uninitialized_fill_n(new_finish, n, value);
new_finish += n;
new_finish = std::uninitialized_copy(position, finish, new_finish); alloc.deallocate(start, end_of_storage - start); start = new_start;
finish = new_finish;
end_of_storage = new_start + new_size;
}
} template<class T>
void MyVector<T>::push_back(const T &value)
{
insert(end(), 1, value);
} template<class T>
void MyVector<T>::pop_back()
{
alloc.destroy(--finish);
} template<class T>
void MyVector<T>::erase(iterator first, iterator last)
{
iterator old_finish = finish;
finish = std::copy(last, finish, first);
::destroy(finish, old_finish);
} template<class T>
void MyVector<T>::clear()
{
erase(start, finish);
} template<class T>
void MyVector<T>::reserve(size_type n)
{
if(capacity() < n)
{
iterator new_start = alloc.allocate(n);
std::uninitialized_copy(start, finish, new_start); ::destroy(start, finish);
alloc.deallocate(start, size()); const size_type old_size = finish - start;
start = new_start;
finish = new_start + old_size;
end_of_storage = new_start + n;
}
} #endif /*MY_VECTOR_H*/