【题意】给出一个由n个点,m条边组成的无向图。求最少去掉多少点才能使得图中存在两点,它们之间不连通。
【思路】回想一下s->t的最小点割,就是去掉多少个点能使得s、t不连通。那么求点连通度就枚举源点、汇点,然后取其中最小点割的最小值就好了。注意如果最大流大于节点数,则应该把它修改为节点数。
【代码】
#include
#include
#include
#include
#include
#include
#define MID(x,y) ((x+y)/2)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int MAXV = 105;
const int MAXE = 5005;
const int oo = 0x3fffffff;/* Dinic-2.0-2013.07.21: adds template. double & int 转换方便多了,也不易出错 ~*/
template
struct Dinic{
struct node{
int u, v;
T flow;
int opp;
int next;
}arc[2*MAXE];
int vn, en, head[MAXV];
int cur[MAXV];
int q[MAXV];
int path[2*MAXE], top;
int dep[MAXV];
void init(int n){
vn = n;
en = 0;
mem(head, -1);
}
void insert_flow(int u, int v, T flow){
arc[en].u = u;
arc[en].v = v;
arc[en].flow = flow;
arc[en].next = head[u];
head[u] = en ++;arc[en].u = v;
arc[en].v = u;
arc[en].flow = 0;
arc[en].next = head[v];
head[v] = en ++;
}
bool bfs(int s, int t){
mem(dep, -1);
int lq = 0, rq = 1;
dep[s] = 0;
q[lq] = s;
while(lq 0){
dep[v] = dep[u] + 1;
q[rq ++] = v;
}
}
}
return false;
}
T solve(int s, int t){
T maxflow = 0;
while(bfs(s, t)){
int i, j;
for (i = 1; i arc[path[k]].flow){
minflow = arc[path[k]].flow;
mink = k;
}
for (int k = 0; k dinic;struct path{
int u, v;
}p[MAXE];
int main(){
//freopen("test.in", "r", stdin);
//freopen("test.out", "w", stdout);
int n, m;
while(scanf("%d %d", &n, &m) != EOF){
if (m == 0){
if (n == 1)
puts("1");
else
puts("0");
continue;
}
for (int i = 0; i【点连通度、边连通度】
[点连通度]:最少去掉多少点才能使得图中存在两点,它们之间不连通。
[边连通度]:最少去掉多少边才能使得图中存在两点,它们之间不连通。
[有向图边连通度]:按图建立流网络,每条边容量为1,枚举源汇点求最小边割集,并取最小值。
[无向图边连通度]:把无向边转化为两条相反方向的有向边转换为有向图边连通度即可。
[点连通度]:求最小边割集变为求最小点割集,具体做法是:每个点拆成(i, i', 1)的边,原图中的边变成(u, v, oo)的边,源点s为s',汇点t还是t。然后枚举源汇点求最小点割集,并取最小值。无向图转有向图的做法和上面一样。