题目大意:
yuebai has a long sequence of integers A1,A2,…,AN.
He also has such a function:
F(x)=∑i=1N(⌊Aix⌋+Aimodx)
x is
a positive integer, which determined by yuebai.
Now he wants to know the minimum value of the function.
求一个x 使F[x]最大
解:
从1枚举到10^6
可知 当X超过10^6 方后 值就不变了
SB了
以为能快速求出的是sigma(Aimodx)。。。
发现 傻逼了 能快速求出的事 sigma(Aimodx)modx。。
预处理好a[i] 表示 A[i]中数值小于i的个数
以N/X的时间求出sigmafloor((Ai/x));
然后利用sigmafloor((Ai/x))+sigma(Aimodx)=sigma(Ai) 求出 sigma(Aimodx)
然后更新答案
代码如下:
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <ctime>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <string>
#define oo 0x13131313
using namespace std;
const int maxn=1000000+5;
int N;
int A[maxn],a[maxn];
int MAX;
long long sum=0;
void input()
{
memset(A,0,sizeof(A));
memset(a,0,sizeof(a));
cin>>N;
MAX=-1;
sum=0;
for(int i=1;i<=N;i++)
{
scanf("%d",&A[i]);
a[A[i]]++;
if(A[i]>MAX) MAX=A[i];
sum+=A[i];
}
for(int i=1;i<=MAX;i++)
{
a[i]=a[i]+a[i-1];
}
}
void solve()
{
long long ans=1LL<<30;
long long tt=0,g;
for(int i=1;i<=MAX;i++)
{
int x=i;tt=0;
for(int t=2*x;t-1<=MAX;t+=x)
{
int p=t-1;
long long k=(long long)(a[p]-a[p-x])*(long long)(p/x);
tt=tt+k;
g=p;
}
tt=tt+(long long)(a[MAX]-a[g])*(long long)(MAX/x);
tt=tt+sum-tt*(long long)x;
if(tt<ans) ans=tt;
}
cout<<ans<<endl;
}
int main()
{
// freopen("a.in","r",stdin);
int T;
cin>>T;
while(T--)
{
input();
solve();
}
}