Linux定时器 timerfd使用

时间:2021-08-20 12:14:22

英文使用手册原汁原味,一手资料。

NAME
       timerfd_create, timerfd_settime, timerfd_gettime - timers that notify via file descriptors

SYNOPSIS

 #include <sys/timerfd.h>

        int timerfd_create(int clockid, int flags);

        int timerfd_settime(int fd, int flags,
const struct itimerspec *new_value,
struct itimerspec *old_value); int timerfd_gettime(int fd, struct itimerspec *curr_value);

DESCRIPTION
       These  system  calls  create  and  operate  on  a timer that delivers timer expiration notifications(过期通知) via a file
       descriptor.  They provide an alternative to the use of setitimer(2) or timer_create(2), with the advantage that
       the file descriptor may be monitored by select(2), poll(2), and epoll(7).

The  use  of  these  three  system  calls  is  analogous  to  the use of timer_create(2), timer_settime(2), and
       timer_gettime(2).  (There is no analog of timer_getoverrun(2), since that functionality is provided by read(2),
       as described below.)

   timerfd_create()

 int timerfd_create(int clockid, int flags);//创建一个时间对象,并返回一个指向该事件对象的文件描述符

timerfd_create()  creates  a  new  timer  object, and returns a file descriptor that refers to that timer.  The
       clockid argument specifies the clock that is used to mark the  progress  of  the  timer,  and  must  be  either
       CLOCK_REALTIME  or CLOCK_MONOTONIC.

   1、CLOCK_REALTIME is a settable system-wide clock.

   2、CLOCK_MONOTONIC is a nonsettable clock that is not affected by discontinuous changes in the system clock

  (e.g., manual changes to  system time).  The current value of each of these clocks can be retrieved using clock_gettime(2).

Starting  with  Linux  2.6.27,  the  following  values  may  be bitwise ORed in flags to change the behavior of
       timerfd_create():

TFD_NONBLOCK  Set the O_NONBLOCK file status flag on the new open file  description.   Using  this  flag  saves
                     extra calls to fcntl(2) to achieve the same result.

TFD_CLOEXEC   Set  the  close-on-exec (FD_CLOEXEC) flag on the new file descriptor.  See the description of the
                     O_CLOEXEC flag in open(2) for reasons why this may be useful.

In Linux versions up to and including 2.6.26, flags must be specified as zero.

  timerfd_settime()

 int timerfd_settime(int fd, int flags,
const struct itimerspec *new_value,
struct itimerspec *old_value);

  timerfd_settime() arms (starts) or disarms (stops) the timer referred to by the file descriptor fd.

The new_value argument specifies the initial expiration and interval for the timer.  The itimer structure  used
       for this argument contains two fields, each of which is in turn a structure of type timespec:

            struct timespec {
time_t tv_sec; /* Seconds */
long tv_nsec; /* Nanoseconds 十亿分之一秒*/
}; struct itimerspec {
struct timespec it_interval; /* Interval for periodic timer 周期*/
struct timespec it_value; /* Initial expiration 初始过期时间*/
};

  new_value.it_value  specifies  the initial expiration of the timer, in seconds and nanoseconds.

   1、Setting either field of new_value.it_value to a nonzero(非零) value arms the timer. (设置一个为非零表示启动定时器)

   2、Setting both fields  of  new_value.it_value  to zero disarms the timer.(设置两个为零表示关闭定时器)

3、Setting  one  or  both  fields  of new_value.it_interval to nonzero values specifies the period, in seconds and
       nanoseconds,  for  repeated  timer  expirations  after   the   initial   expiration.   (至少一个非零,表示设定周期,定时器周期性工作)

   4、If   both   fields   of new_value.it_interval are zero, the timer expires just once, at the time specified by new_value.it_value.
  (如果new_value.it_interval的两个时间域都为零,则表示定时器只工作一次,即到达初始过期时间后就停止工作,非周期性)

The  flags argument is either 0, to start a relative timer(相对时间) (new_value.it_value specifies a time relative to the
       current value  of  the  clock  specified  by  clockid),  or  TFD_TIMER_ABSTIME,  to  start  an  absolute  timer(绝对时间)
       (new_value.it_value  specifies  an  absolute  time  for the clock specified by clockid; that is, the timer will
       expire when the value of that clock reaches the value specified in new_value.it_value).

If the old_value argument is not NULL, then the itimerspec structure that it points to is used  to  return  the
       setting of the timer that was current at the time of the call; see the description of timerfd_gettime() follow‐
       ing.

timerfd_gettime()

 int timerfd_gettime(int fd, struct itimerspec *curr_value);

timerfd_gettime() returns, in curr_value, an itimerspec structure that contains  the  current  setting  of  the
       timer referred to by the file descriptor fd.

The  it_value field returns the amount of time until the timer will next expire.  If both fields of this struc‐
       ture are zero, then the timer is currently disarmed.  This field always contains a relative  value,  regardless
       of whether the TFD_TIMER_ABSTIME flag was specified when setting the timer.

The  it_interval  field returns the interval of the timer.  If both fields of this structure are zero, then the
       timer is set to expire just once, at the time specified by curr_value.it_value.

Operating on a timer file descriptor
       The file descriptor returned by timerfd_create() supports the following operations:

read(2)
              If the timer has already expired one  or  more  times  since  its  settings  were  last  modified  using
              timerfd_settime(),  or  since  the  last successful read(2), then the buffer given to read(2) returns an
              unsigned 8-byte integer (uint64_t) containing the  number  of  expirations  that  have  occurred.   (The
              returned value is in host byte order—that is, the native byte order for integers on the host machine.)

If  no timer expirations have occurred at the time of the read(2), then the call either blocks until the
              next timer expiration, or fails with the error EAGAIN if the file descriptor has been  made  nonblocking
              (via the use of the fcntl(2) F_SETFL operation to set the O_NONBLOCK flag).

A read(2) will fail with the error EINVAL if the size of the supplied buffer is less than 8 bytes.

poll(2), select(2) (and similar)
              The file descriptor is readable (the select(2) readfds argument; the poll(2) POLLIN flag) if one or more
              timer expirations have occurred.

The file descriptor also supports the other file-descriptor multiplexing APIs: pselect(2), ppoll(2), and
              epoll(7).

close(2)
              When  the  file descriptor is no longer required it should be closed.  When all file descriptors associ‐
              ated with the same timer object have been closed, the timer is disarmed and its resources are  freed  by
              the kernel.

fork(2) semantics
       After  a  fork(2),  the  child  inherits  a  copy of the file descriptor created by timerfd_create().  The file
       descriptor refers to the same underlying timer object as the corresponding file descriptor in the  parent,  and
       read(2)s in the child will return information about expirations of the timer.

execve(2) semantics
       A  file  descriptor  created by timerfd_create() is preserved across execve(2), and continues to generate timer
       expirations if the timer was armed.

RETURN VALUE
       On success, timerfd_create() returns a new file descriptor.  On error, -1 is returned and errno is set to indi‐
       cate the error.

timerfd_settime() and timerfd_gettime() return 0 on success; on error they return -1, and set errno to indicate
       the error.

ERRORS
       timerfd_create() can fail with the following errors:

EINVAL The clockid argument is neither CLOCK_MONOTONIC nor CLOCK_REALTIME;

EINVAL flags is invalid; or, in Linux 2.6.26 or earlier, flags is nonzero.

EMFILE The per-process limit of open file descriptors has been reached.

ENFILE The system-wide limit on the total number of open files has been reached.

ENODEV Could not mount (internal) anonymous inode device.

ENOMEM There was insufficient kernel memory to create the timer.

timerfd_settime() and timerfd_gettime() can fail with the following errors:

EBADF  fd is not a valid file descriptor.

EFAULT new_value, old_value, or curr_value is not valid a pointer.

EINVAL fd is not a valid timerfd file descriptor.

timerfd_settime() can also fail with the following errors:

EINVAL new_value is not properly initialized (one of the tv_nsec falls outside the range zero to 999,999,999).

EINVAL flags is invalid.

VERSIONS
       These system calls are available on Linux since kernel 2.6.25.  Library support is provided by glibc since ver‐
       sion 2.8.

CONFORMING TO
       These system calls are Linux-specific.

BUGS
       Currently, timerfd_create() supports fewer types of clock IDs than timer_create(2).

EXAMPLE
       The following program creates a timer and then monitors its progress.  The program accepts up to three command-
       line arguments.  The first argument specifies the number of seconds for the initial expiration  of  the  timer.
       The  second argument specifies the interval for the timer, in seconds.  The third argument specifies the number
       of times the program should allow the timer to expire before terminating.  The second  and  third  command-line
       arguments are optional.

The following shell session demonstrates the use of the program:

$ a.out
0.000: timer started
3.000: read: ; total=
4.000: read: ; total=
^Z # type control-Z to suspend the program
[]+ Stopped ./timerfd3_demo
$ fg # Resume execution after a few seconds
a.out
9.660: read: ; total=
10.000: read: ; total=
11.000: read: ; total=
^C # type control-C to suspend the program

Program source

 #include <sys/timerfd.h>
#include <time.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h> /* Definition of uint64_t */ #define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while () static void
print_elapsed_time(void)
{
static struct timespec start;
struct timespec curr;
static int first_call = ;
int secs, nsecs; if (first_call) {
first_call = ;
if (clock_gettime(CLOCK_MONOTONIC, &start) == -)
handle_error("clock_gettime");
} if (clock_gettime(CLOCK_MONOTONIC, &curr) == -)
handle_error("clock_gettime"); secs = curr.tv_sec - start.tv_sec;
nsecs = curr.tv_nsec - start.tv_nsec;
if (nsecs < ) {
secs--;
nsecs += ;
}
printf("%d.%03d: ", secs, (nsecs + ) / );
} int
main(int argc, char *argv[])
{
struct itimerspec new_value;
int max_exp, fd;
struct timespec now;
uint64_t exp, tot_exp;
ssize_t s; if ((argc != ) && (argc != )) {
fprintf(stderr, "%s init-secs [interval-secs max-exp]\n",
argv[]);
exit(EXIT_FAILURE);
} if (clock_gettime(CLOCK_REALTIME, &now) == -)
handle_error("clock_gettime"); /* Create a CLOCK_REALTIME absolute timer with initial
expiration and interval as specified in command line */ new_value.it_value.tv_sec = now.tv_sec + atoi(argv[]);
new_value.it_value.tv_nsec = now.tv_nsec;
if (argc == ) {
new_value.it_interval.tv_sec = ;
max_exp = ;
} else {
new_value.it_interval.tv_sec = atoi(argv[]);
max_exp = atoi(argv[]);
}
new_value.it_interval.tv_nsec = ; fd = timerfd_create(CLOCK_REALTIME, );
if (fd == -)
handle_error("timerfd_create"); if (timerfd_settime(fd, TFD_TIMER_ABSTIME, &new_value, NULL) == -)
handle_error("timerfd_settime"); print_elapsed_time();
printf("timer started\n"); for (tot_exp = ; tot_exp < max_exp;) {
s = read(fd, &exp, sizeof(uint64_t));
if (s != sizeof(uint64_t))
handle_error("read"); tot_exp += exp;
print_elapsed_time();
printf("read: %llu; total=%llu\n",
(unsigned long long) exp,
(unsigned long long) tot_exp);
} exit(EXIT_SUCCESS);
}

SEE ALSO
       eventfd(2),   poll(2),   read(2),  select(2),  setitimer(2),  signalfd(2),  timer_create(2),  timer_gettime(2),
       timer_settime(2), epoll(7), time(7)

COLOPHON
       This page is part of release 3.74 of the Linux man-pages project.  A description of  the  project,  information
       about    reporting    bugs,    and    the    latest    version    of    this    page,    can    be   found   at
       http://www.kernel.org/doc/man-pages/.

Linux定时器 timerfd使用的更多相关文章

  1. linux定时器用法

    linux定时器  原文出自http://www.cnblogs.com/processakai/archive/2012/04/11/2442294.html 今天看书看到了关于alarm的一些用法 ...

  2. linux定时器crontab

    linux定时器crontab用法: 1.基本格式 : * * * * * command 分 时 日 月 周 命令 第1列表示分钟1-59 每分钟用*或者 */1表示 第2列表示小时1-23(0表示 ...

  3. Linux 定时器应用【转】

    Linux 定时器应用 实验目的 阅读 Linux 相关源代码,学习 Linux 系统中的时钟和定时器原理,即,ITIMER_REAL实时计数,ITIMER_VIRTUAL 统计进程在用户模式执行的时 ...

  4. 4412 Linux定时器

    一.Linux定时器基础知识 1.1 定时器的使用范围 延后执行某个操作,定时查询某个状态:前提是对时间要求不高的地方 1.2 内核时间概念 Hz:(系统时钟通过CONFIG_HZ来设置,范围是100 ...

  5. Linux使用定时器timerfd 和 eventfd接口实现进程线程通信

    body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...

  6. fd定时器--timerfd学习

    定时器 可以用系统定时器信号SIGALARM 最近工作需要于是又发现了一个新玩意timerfd配合epoll使用. man 手册看一下 TIMERFD_CREATE(2) Linux Programm ...

  7. linux定时器(crontab)实例

    linux实验示例----实现每2分钟将“/etc”下面的文件打包存储到“/usr/lobal”目录下 ·Step1:编辑当前用户的crontab并保存终端输入:>crontab -u root ...

  8. Linux定时器相关源码分析

    Linux的定时器使用时间轮算法.数据结构不难理解,核心数据结构与散列表及其相似,甚至可以说,就是散列表.事实上,理解其散列表的本质,有助于对相关操作的理解. 数据结构 这里先列出一些宏,稍后解释: ...

  9. Smart210学习记录-----linux定时器

    1.内核定时器: Linux 内核所提供的用于操作定时器的数据结构和函数如下: (1) timer_list 在 Linux 内核中,timer_list 结构体的一个实例对应一个定时器 1 stru ...

随机推荐

  1. ubuntu&colon;solve the problem of &&num;39&semi;E&colon;Problem with MergeList &sol;var&sol;lib&sol;apt&sol;lists&sol;&&num;39&semi;

    just run this command: sudo rm /var/lib/apt/lists/* -vfR it will remove all the software package wit ...

  2. hashtable用法

    import java.util.Hashtable; public class HashTable { public static void main (String[] args) { Hasht ...

  3. HTML解析引擎:Jumony 开源项目

    Jumony Core首先提供了一个近乎完美的HTML解析引擎,其解析结果无限逼近浏览器的解析结果.不论是无结束标签的元素,可选结束标签的元素,或是标记属性,或是CSS选择器和样式,一切合法的,不合法 ...

  4. Android学习-应用程序管理

    在前段时间,公司要求做一个Android系统的应用程序管理,要实现卸载程序.清除数据.停止正在运行的服务这几大模块,现在将代码粗略总结如下: 主要运用到的类有 PackageManager Activ ...

  5. 简单的线性回归问题-TensorFlow&plus;MATLAB&&num;183&semi;

    首先我们要试验的是 人体脂肪fat和年龄age以及体重weight之间的关系,我们的目标就是得到一个最优化的平面来表示三者之间的关系: TensorFlow的程序如下: import tensorfl ...

  6. JS——判断一个对象是否为空

    判断一个对象是否为空对象,本文给出三种判断方法: 1.最常见的思路,for...in...遍历属性,为真则为"非空数组":否则为"空数组" 2.通过JSON自带 ...

  7. 常用sql语句总结(二)(更新数据&comma;序列&comma;创建数据表&comma;约束&comma;注释)

    常用sql语句总结(二)(更新数据,序列,创建数据表,约束,注释) 一. 增 INSERT INTO 数据表(字段,字段,-) VALUES(值,值-); INSERT INTO emp(empno, ...

  8. 初学python笔记----字符串

    ---恢复内容开始--- 1.在python中,用引号括起来的都是字符串,引号可以是单引号,也可以是双引号 2.修改字符串的大小写 3.字符串拼接用“+” 4.制表符("\t"), ...

  9. Android单元测试学习(一)

    什么是单元测试 首先总结一下什么是单元测试,单元测试中的单元在Android或Java中可以理解为某个类中的某一个方法,因此单元测试就是针对Android或Java中某个类中的某一个方法中的逻辑代码进 ...

  10. Linux内核驱动--硬件访问I&sol;O【原创】

    寄存器与内存 寄存器与内存的区别在哪里呢? 寄存器和RAM的主要不同在于寄存器操作有副作用(side effect或边际效果): 读取某个地址时可能导致该地址内容发生变化,比如很多设备的中断状态寄存器 ...