HDU 5675 ztr loves math (数学推导)

时间:2022-10-17 20:45:20

ztr loves math

题目链接:

http://acm.hust.edu.cn/vjudge/contest/123316#problem/A

Description

ztr loves research Math.One day,He thought about the "Lower Edition" of triangle equation set.Such as n = x^2 - y^2.

He wanted to know that ,for a given number n,is there a positive integer solutions?

Input

There are T test cases.

The first line of input contains an positive integer indicating the number of test cases.

For each test case:each line contains a positive integer ,.

Output

If there be a positive integer solutions,print true,else print false.

Sample Input

4

6

25

81

105

Sample Output

False

True

True

True

Hint

For the fourth case,105 = 132-82.

题意:

给出一个N(N<=10^18);

问N能否由两个完全平方数相减得到;

题解:

对于相邻自然数 n 和 n+1 :

(n+1)^2 - n^2 = 2n+1;

即相邻两平方数之差一定是一个奇数;

那么任意两个平方数之差一定是多个连续奇数的和.

而任意两个连续奇数之和为:

(2n-1) + (2n+1) = 4n;

即两个连续奇数之和必定能整除4;

那么本题满足条件的n须两个性质之一:

  1. N为奇数
  2. N能被4整除;

特判:由于题目要求任一平方数不能为0;

则1和4不满足要求.

TLE了一发:把puts和cin都换掉就过了...

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#define LL long long
#define eps 1e-8
#define maxn 1100
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std; LL n; int main(int argc, char const *argv[])
{
//IN; int t; scanf("%d", &t);
while(t--)
{
scanf("%I64d", &n); if(n == 1 || n==4) {
printf("False\n");
continue;
} if(n&1 || n%4==0) printf("True\n");
else printf("False\n");
} return 0;
}