.net中创建xml文件的两种方法
方法1:根据xml结构一步一步构建xml文档,保存文件(动态方式)
方法2:直接加载xml结构,保存文件(固定方式)
方法1:动态创建xml文档
根据传递的值,构建xml文档结构
1、创建实体类,保存窗体传递的值
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks; namespace CreateXmlTest.Model
{
public class XmlTest
{
//xml文档名称
public string Name { get; set; } //厂商名称
public string Factory { get; set; } //上传方式
public string UpMethod { get; set; } //压缩方式
public string Compress { get; set; }
}
}
2、创建窗体页面
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAhEAAAFlCAIAAADapy0PAAAgAElEQVR4nO3ca3QUZb7v8Xp1Zs6cM2vP2TvH7bh9MStnhjVe9guB3iYDzoU4XhCRJGuCzl7ieElmRAUcLipe4klMM0oIF2EPFxFH7VbR0dERtbk2gspNTYNyk6YTCQQ7XiIIcwLE57zoJHTq8tTT3VWdrtT3s/7LVV391FPV1c9Tv65ujHby5Mnbb7+d//Jf/st/+S//tf2vdhIAADVnM2M4AAAG559//rnnnns2M4YPHz5q1KhIJHLo0CEBAECaM2fOfPLZ5/9WNrronHO04cOHz507t62tbfHrzRRFURRlWjs7//HC7hZt1KhRbW1tS16PURRFUZSkNn55QotEIktWxSiKoijKtrRDhw4tfWMnRVEURdmW9o9//GPZm7soiqIoyrY0IcTytz6iKIqiKNvShBBPRj6iKIqiKNvShBArVu+mKIqiKNsiMyiKoijVIjMoiiqgmr9y850PL7lx8p/yXHc+vGT+ys2FcwxPhdfeeNm1ZUXFea4bL7v2qfBayRtEZlAUVUBVPWNeZFNz4uixPFdkU3P1jHmFcwzXDQmsXrrsm1078lyrly67bkhA8gZpQoi/rNlDURRVCHXTlEcTR49t+qg9z5U4euymKY8WzjGUFRUfj2377IUn8lzHY9vKioolb5B9ZkSzMuAjj6IoL9bv7n7sYPuxjbva81wH24/97u7HCucYyoqKj32wpT28pD285OhzvRXuqb6VR0KLU9UeWtweWnz0uSU9m/S17Hmqp+XR55YcDS89Gl56tsP+PR/7YIsDmWFcE41GP372vFTF/vLD2F9+uP2Jf3138TnrFxSRGRRFZV0391yvj+S5DrYfu7n3eq1yDA8/tqyyqka9Hn5sWUbHUFZU3Ll985GnF+nrmUVHnulZXnb/g+m7WDj9npYn5x1+euHZBg/0bzDjntYn55v0+fSiI08vOvz0osNPL+rcvpnMoCjKM3XzH2fH249t2NWe54q3H7v5j7PVj6GyqqY7E5VVNRkdQ1lR8VdbNrY9Oa/tyXlty3vqUPryE3N1x1BZVfPYXVMO/Hn2oSfmHlo+b8m9M40NtjU+3PrE3EPLz/bTs4venr/astE+M55eu1dS0WjUuCaVGd9+Hvn288i3n7387Wcvdx9+qrt1zquz/lfqWXmfFEVRpnXL1MZ4+7H1u9rzXAfaj98ytVH9GCqras5korKqZk3zIXmf8fZjfcdQVlT8xeZ1ny6e/eni2a1LemtxY+/C7JbFjxlzq7Kq5tE7J+1Z0PDn6feYPrumdmr8z4+2Lpn96ZLZn/Z029i6pLF3efYXm9eVFRVL3qDsM+PDFed++9nL3YdXdLc2dbc2dR+4r3v3bc8++H2rzJg98RKtv18F8zQKZ0+8RLtm6YBPBoqibOuWqY3x9uPrdx3Nc+ky40D7sQ27jkqqsqrmdCYqq2re2BqX95l+DKnMSCyalVg0K7FwVmqhZdHZhYMLg6b3OpVVNcHb77B66q37Jx9Y0JBYOKslrbeePhfOalk4y5nMMPXun8/pbp3T/cnMM7urz+yuPtN83ZkdI5ZM++/SzBg/Lc9D8C8zf5IKKDKDorxQHsqMrl6SnzHS2/z93X3OZsa8yXdbZYPpytrbaqIPT4s/HnQ9M7Zc+N0tF343+tPvvTnkf7z84547ibfm/HP37uozzded3j7y9PaRp9+74PTb582767uFkxmzJ16iXTRz9tq9064hMyjKG+WhzPh/vSqrahY/H1n24lpd6do4mxmJRbP2za9/dOKdKr+spAJj1X2TdjXWHsw9M55dv09S2WWGsZ85d1yiaeOnm+7lmd67AU3TNG3UrLNPTR+jaRfNnH7HJZqmaRfNnJNaM2bZnDt6v+m6aOacns5TTHaR2kT+MimKKoS6ddqcLR+3LX51h6SmPDAvo3+zNOWBefIOF7+6Y8vHbbdOm6N+DJVVNSd7VVbVzHryjabwBl3p2jSFN6gfQ1lR8b6lTW+VXSypN8sufu1XF9575RXy2Kisqply+eWL/uPHL/78gjdHyTp8q+zifUubyoqKJW+QJoQIbdgvqWg0umbI99YM+d7x119JLpy34kf/lEqFF+v/6cz2EWfeveDMpvPObDrvdPQHp6M/mDPxO6lnjf003XGJpo2fYdzFn8ZrmjbqT70Pn73/J5r2kzvWpB7OGKNpmqaNeaKvfWpNT4Nn7+8Jm54GT4zq3/jsJoaVFEUVYCler20/WesumoqZkdExfNPLKg9U2lgdg0pmpGLjb7+8cMZVv66sqjlqprKqZvLlly8I/J8XLvupbWD0ZYbkDdKEEM9FD0gqGo2+9OPvv/Tj7ycXzY3X3Dz3/H9OpcKK+/7n4qnfWzD5u013fKfpju/MmfidORP/W19mGPuZe+fQ/j+BX39P9MBz0eVlmjbkznWGlqlnD9wzpq9lT90zRtMuemBu+sO0Brpnz64cs1z+MimKKoRSvF53ZaKyqua/Xt6qcr3O6Bjae0kyw7aN1TEoZsZbZRfXj7mqsqrmiLXKqpqpV/z6r7+44E2F3lKZIXmDNCHE8xvjkopGo8t/9IPlP/rBgd/f/GHpsLof/m+b/wU8Go1Go8Z+5t81VNNuuFe3PvzgEE27/LH+Kx+7QdOG3hSOP78xfu+1mnbxg/PTnr33Wk27dnm/h2kN5t81VNfeuAlFUQVbitfrzzJRWVUz/4W3Va7XGR3D4V6SzLBtY3UMipnxyJirK6tq2uxUVtXce+UVr/3qQtvYSGWG5A3ShBAvbIpLKhqNNp3/L03n/0vDeUUPnHvO1HP+NZUKM19pSdWMlfEZK+NTntkfjUZT7VMLupo/aaim3XCfbv3zDw7RtMtn9185+wZNG3rT8/EXNsXvG6tpFz84P+3Z+8Zq2tjl/R6mNZg/aaiuvXETiqIKtm6dNmfr7ralr70vqcqqmpZMVFbVzHsuKu9z6+62W6fN6XcMf39fUpVVNZ/2kvyUkt5m3vNReZ9bdx/uO4ZUZqy5etiaq4etHj1szehha0afXVgzeviaq4c3XHdtZVVNq4HVyvtGX73qyktWXz2sr9aMHp7aRV+lMkPyBmlCiBc3JySVUWak2qcWdPX4pKGadsNM/foVv9a0IZOiVi1njtW0ix96PO3ZmWM1beyKfg/TGjw+aaiuvXETiqIKtlQyI9PfwG+b9LBiZvQ7BrvMSGRCPTNSx2CbGauvHm56DJVVNVOuuNLqqdAv/z1ylX1mSN4gTQjx0jstkrL69mnGyvjTb4umN8S0kJgWEtc/uj0ajfa1N/bz+OShmvbb+83Xa7+e07tmzm/TH96fioS09veP1bSxK/o9TGvw+OShuvbGTSiKKthSyYylr73/+MpNjyz524Pzwir1yJK/Pb5yk0pm9DsGu8yIZ0I9M1LHoJgZxr3cfeWVC392wdSrrjR9dtnIC9+8aqhtZkjeIE0I8fJ7rZKKRqO65VQq/G5BbO4bYlpI3LjgzI0LzvzirnXpzxr7WTRlmKb99gHTvTT9Nu238WG3rDz71APjNO3faxe913/NuKesGiyaMkzX3rgJRVEFW7dNn7Ntz+EnVn0or6Wv7Vj00jsLVr6tUoteemfpazvkHW7bc/i26XPSj2H5qg8lVVlV80kmKqtqHl/5trzPbXuO9B1DWVHx/uXzN1T+3KIuW1/5c90xVFbVTL3mmqVlQ18ZU7pq7M/uH3utscHyy4etrbjMutuf718+v6yoWPIGaUKIv235VFLRaFS3nEqFK2ds/MWkdT/7/erALW+mKv1ZeZ8URVGmVT2j6YMDyWfX781zfXAgWT2jSf0Ypv/fRRl9P/aHPz6y9LVt6sdQVlQcf2bx5gmjN08YvWnCNanafNPo1JrNE0ZvmjD6karfpO9i+nXjVoy57I3xV7x94+hNE65Z959XPVhZoWvwfPkv355w9dl+bhq9ecI1mydc09dt/JnFZUXFkjdIE0K8urVNUir/SspI3idFUZRp1cyYu7Ply5feSeS5drZ8WTNjbkbH8Ozajxe+EG18apVKLXwh+uzaj9WPoayouOXFp7ZOHL914vitE69Pq7414zf/4Td/nzA2fP3VoaqrwuOv+ut/jll3W8V7t/e03zLx+k01v3l1wrXh6696trdBtLpyS79+xm+9ffzW28/uouXFp8qKiiVvkCaEeG37YUlllxnyPimKokzr9/fO233o6/zvd/ehr39/77yMjuGVLa0rN+5/bv0elVq5cf8rW1rVj6GsqLjt9Rc/mH6bvHZMu3X71Fu2Tb1l+9Rbdky79f3MG3wwvfqD6dV9D9tef7GsqFhykJoQ4u87jlAURRVC/eG++XuPHH+z+bM8194jx/9w3/zCOYayouKj61btrJ28s3byzocm76qdvKt28q6HJu/sq9pJO2sn9TSonbzzoUk7H5q06+yaSTtrJ+18KO3hQ/1q10M9vfUtpOroulVlRcWSN0gTQrz+/hGKoqhCqLvrlq3ftndf+zd5rvXb9t5dt6xwjmHcBSVrly77/N1onmvt0mXjLiiRvEGaEGLVB+0URVGFUM+s3nV33dLbZy7Ic91dt/SZ1bsK5xiWrVh13ZBAWVFxnuu6IYFlK1ZJ3iBNCPHmh0cpiqIoyrY0IcRbzZ9RFEVRlG1pQohILElRFEVRtmWZGZ0AAB8jMwAAqsgMAIAqMgMAoIrMAACoIjMAAKrIDACAKjIDAKCKzAAAqCIzAACqyAwAgCoyAwCgiswAAKgiMwAAqsgMAIAqMgMAoIrMAACoIjMAAKrIDACAKjIDAKCKzAAAqCIzAACqyAwAgCrLzFgdS+qKzAAAn4sYomE1mQEAMGWdGTuTuiIzAMDnIjF9NKzeSWYAAMyQGQAAVWQGHKBpmu2yfGVGu3Bvk4zMBHLg6uB0j2VmrNmZ1BWZASuOZIbWy3YX8iPpa5mHzBBAVjydGcZ0SGVGh67IDFhJv0ybUmks71/erXxHLiEzkDXvZ0a/dCAzoMp4BZfcZ+gaq986ZLdSHl25IzOQNY9nhj4dNCHEml0duiIzYEV+nyFpbNutabpYbSiJK5XdZYrMQNa8nRmGdNCEEGt3daQXmQEJSQzIM0P9VkCeNOpB5SAyA1nzdGbo0mGtaWasJTNgQfd1k/zybfxuSn5zYNxW3kBxpWKHcmQGskZmwL90gWF8Vt5YJTMUL+6Z3mGQGRgogzAz1u3q0BWZASPddV9+n2Fs3GmXGaYdSu5gVPbiFDIDWfN0ZhjTQRNCrPuoQ1dkBqxk+unedEGeAbY7Nc0n0wWnkBnImrczw5AOZAYyk/51k8oNgemCYjaYrje9t7DaXfpTfDeFATEIM2P9Rx26IjNgxTQV5Nd6qyCx7Vyy3rSlvGcyAwPC05lhTIdUZnyuKzIDVqx+k5BcxCV3Ccb2Krcv8t25gcxA1jyeGfp00IQQGz7+fMPHn69PKzIDVtK/mzI+JfnhwfgjhPpPI7YtraLFKWQGsubpzEhFw4a0OpsZ6UVmAOnIDGTN65mxwZgZ0Y8/1xWZAaQjM5A1T2eGMR00IUR09+e6IjOAdGQGsubtzDCkQ09mbOxfZAaQjsxA1jydGRsN6aAJIYxryQwgHZmBrA3CzHh7zxe6IjOAdGQGsubpzDCmA5kB2CMzkLVBmBmb9nyhKzIDSEdmIGuezgxjOmhCiE17v9AVmQGkIzOQNW9nhiEdNCHE5r1f6IrMANKRGciapzPDmA6aEOKdfV/oiswA0s0EcjDQ4zdLkVjSmA6pzPhSV2QGAPhcJJY0poMmhHh335e6IjMAwOcisaQxHTQhxHv7v9QVmQEAPheJJY3pQGYAAExYZsaWT77SFZkBAD4XiSWN6aAJIbZ+8pWuyAwA8LlILGlMB00Ise3AV7oiMwDA5yKxpDEdNCHE9vhXuiIzAMDnIrGkMR1SmdGpKzIDAHwuEksa00ETQuw42KkrMgMAfC4SSxrTQRNCvH+wU1dkBgD4XCSWNKaDJoT4INGpKzIDAHwuEksa00ETQnyY+FpXZAYA+FwkljSmgyaEaG75WldkBgD4XCSWNKYDmQEAMGGZGbHWr3VFZgCAz0ViSWM6aEKIna1f64rMgG819GKZZfeWHR617ojEksZ00IQQuz49pisyAwBc4qHMMKaDJoT46NNjuiIz4Ftemc/wLq+MsUgsaUwHTQjx0aFjuiIz4Ftemc+A2yKxpDEdNCHEx23HdEVmwLfIDLjNK2MsEkumEmF32/HdbcdTy5oQIvU4vcgMAHCJhzLDmA6aEGJP2/E9bcf3HD6+5/Dx1DKZAd/yynyGd3lljEViyZ50SCtNCNGTFmlFZsC3vDKfAbdFYkljOmhCiL2Hj+uKzICzNE1zqXHWm1ghM+A2r4yxSCxpTAdNCLHvyPF9R47vTSsyA1Y0O5IN1XehfiSZdg4MOA9lRno6pJZTmfGNrsgMWMnogp5FwNi2NN12YO8zmpubg8FgeXl5aWlpaWlpRUVFMBhsbm526pAGE85Vp8cyQ58OmhBif/s3+4/0KzIDVjK9OhvbZ3ovorJS/XbHVkbzuaOjo76+PhAIhEKhRCLR1dXV1dV18ODBUCgUCARqa2uTSaZSD86V50Riyf1HvtEFRG9m9C8yA1ayuBzr7hKs2qSeUryBkPeZn8zo6Oiorq5ubGzs7u4WBt3d3U1NTdXV1R0dHVkfzKDBuUrnofsMYzpoQohP2r/RFZkBKxn9LJHpF1O6XSh+eZX1Eeaorq6usbHReAVM19jYWF9f78jucrx/Glh5PlcpBXvGPJQZxnQgM5CZjDLDuIk8D9Kb2TbI6NjULx+K8zkWiwUCAdNPzbpP0IFAIBaLyQ/M9Bca41OFeQW0lfu5yu6LR8lZ1S3nmecz48DRb3RFZsBKpplhdR9g1Y/iNM70DsPxzAgGg6FQSH4RTAmFQsFg0OqoTB8qrvcKx89VLufBqX78IBJLGtOBzEBmsviUZ/yQaHXFl7DqudNwSc3xQqCYGeXl5YlEQuU6mEgkysvLTTvxSWY4fq4cyYwBPJkeus8gM5CrTO8zOi1mu26l7c2H7qG8zzxcDkpKSk6dOqVyHTx16lRJSYlthyrXRMmXKsaVxsw2be+Vc2X1jpu+5E6LV92Zdg5Nd5GfczIIMuPEgaMneledOHD0BJkBK25khm3nxh4y7Vz9QqA4n9WvgydOnBg5cqSkK6tLm+1K+UlQbG986DhHzpXVBT2jh512WSLZ0EGeyowTuuI3cGQgo4lk/MSn+xio3r/tDLc9PMczQ/37lng8XlFRYduh5JOvVRv1UNE9zHNmOHKurO4PssiMLPrxJ8vfwPlb6FCUXWaoP6tZU9xc/fCsOP4beDgcVuzTNjIl17W+s6SYGfLT6yxHzpVi4ClmhmnLvJ0TD91nmP8t9Hf3f5le7+3/ksyAUaazSHIFtJqTWd9n5Ofal665uVn9349a/W2MTO8DVNZncZ/hNmfPlXuZkfELy5aHMsOYDpoQYnUsuXpnvyIz4Fvq81nx/1Orq6uz6sHxzNAFp/GhvB/3OHuuJMvqmSFZNt3QQR7KDGM6kBlAP3n+2yGmX4aYfkmi8rCz/3UzfY3VnVl+Pl/neK6sXqzxWd2C5KTJT7s7p8FjyAzAXnZ/ozAcDre0tJw+ffrkyZPxeDwcDhfC390rqGtfgZ+rfOI+A/C1WCzW0NAwbty4Sy+9dMSIERUVFQ0NDQP+970L8yNzYZ6rPCMzgMHDK/MZ3uWVMUZmAPa8Mp8Bt5EZgD0yA27zyhgjMwBg4JEZwODhlfkM7/LKGCMzAHtemc+A28gMwF4qMxp6scyyS8uFj8wAAKgiMwAAqsgMAIAqMgMAoIrMAACoIjMAAKrIDACAKjIDAKCKzAAAqCIzAACqyAwAgCoyAwCgiswAAKgiMwAAqsgMAIAqMgMAoIrMAACoIjMAAKrIDACAKjIDAKCKzAAAqCIzAACqyAwAgCoyAwCgiswA7DX0Ypll95YdHrXuIDMAYOCRGcDg4ZX5DO/yyhgjMwB7XpnPgNvIDMAemQG3eWWMkRkAMPDIDGDw8Mp8hnd5ZYyRGYA9r8xnwG1kBvJN0zTbNVZPSVpKNs90KyMyA27zyhgjM+AAzY6usWkPVj2rNJMcWHYbAnlGZsBH1K/I6S2zCBirZrkfmFyO87m5uTkYDJaXl5eWlpaWllZUVASDwebmZkeObRDg/HSSGfAVxbsB3ad++Q2HMUh0eaPbSkXWLzDr+dzR0VFfXx8IBEKhUCKR6Orq6urqOnjwYCgUCgQCtbW1yaSvpxXnx3PIDDhAPTOMl2/5pdw0ZrK7rclFdpnR0dFRXV3d2NjY3d0tDLq7u5uamqqrqzs6Ohw5SM/h/KTjPgM+ktGvDra3CPKuMooBpzIjO3V1dY2NjcarYbrGxsb6+voBPMgB5Or5yfHOMv/IDPhI38d/22+EJA9N48H0psT0WmC6U9v0UrysZDGfY7FYIBAw/QSt+zQdCARisZj8IE3PpPHk9K2RPFsgF1M3zo/x9eblpTiDzICP2N4cWK2XX9zTr4CddgGT0ZHo+reVxXwOBoOhUEh+QUwJhULBYNDqCE0fWp2KTJcHkOPnp0Be16BHZsAB6plh/CzcafFRUZcTpnkjCSH5kWQqi8woLy9PJBIq18REIlFeXm7aienLkb9qqzZWfQ4UR85PugJ5XVnjPgM+ovJx2HQT2xuITL9dsU2RvCkpKTl16pTKNfHUqVMlJSW2HcrjU7esfn4GirPnxzhsjIPE+BnF8ReVCzIDPiK/0NtuKAmDTL9gkVxPFe9UTGUxn9WviSdOnBg5cqSkK91x5nJ3VTgXSgfPT6fdv9tOX6M+OPOMzIBfqHzs1T1r9QWUsX0WmWHMHslXOu5lhvp3L/F4vKKiwrZDxfsM0wby9QPCwfOT9U1nQZ0QryAzkCv1r4OsbiPU7zMkzeRfOOT4XYSrv4GHw2HF/iXhZ9vGauVAcfD8DI7M4D4DvpD+4VdCvrmD9xkqh5ofzc3N6v+W1OrvZFhFrKSZSptC4Mj56czwizgyI3dkBmAvu/ms+P+s1dXVWfVgdY1TiVLF9B1AuZ+fTuWX3LemAM9DCpkBDB4D+LdDbL+OM12je1b9zi+fcj8/Vq/L6sWanhxkhMwA7OX+NwrD4XBLS8vp06dPnjwZj8fD4TB/g68z7+enkHOC+wwAPWKxWENDw7hx4y699NIRI0ZUVFQ0NDT47W99S+Tn/BT47QWZAQweXpnP8C6vjDEyA7DnlfkMuI3MAOyRGXCbV8YYmQEAA4/MAAYPr8xneJdXxhiZAdjzynwG3EZmAPZSmdHQi2WWXVoufGQGAEAVmQEAUEVmAABUkRkAAFVkBgBAFZkBAFBFZgAAVJEZAABVZAYAQBWZAQBQRWYAAFSRGQAAVWQGAEAVmQEAUEVmAABUkRkAAFVkBgBAFZkBAFBFZgAAVJEZAABVZAYAQBWZAQBQRWYAAFSRGYC9hl4ss+zessOj1h1kBgAMPDIDGDy8Mp/hXV4ZY2QGYM8r8xlwG5kB2CMz4DavjDEyAwAGHpkBDB5emc/wLq+MMTIDsOeV+Qy4jcyAwzRNy7RNFptkdDDZbZuOzIDbvDLGyAw4zKXMUG9muknusQG4isyAT6lnhmYmvY2K3A9GRRbzubm5ORgMlpeXl5aWlpaWVlRUBIPB5uZmR45nkOFcdZIZ8K0sruO5X/odCRiJjOZzR0dHfX19IBAIhUKJRKKrq6urq+vgwYOhUCgQCNTW1iaTTKUenCvPITPgsEwDwL0fM3LZUEc9Mzo6OqqrqxsbG7u7u4VBd3d3U1NTdXV1R0eHIwfmaZyrdNxnwKfkn+771mR0NzDgmaGurq6usbHReAVM19jYWF9f78jucrx/Glh5PlcFjsyAT0kuYZrZv2JSvM+wjRbTZ+Wdq19wFedzLBYLBAKmn5p1n6ADgUAsFpMcUnqyynfq0cxw6lw58t1jISAz4FMZXeMU57lpQqi0zHNmBIPBUCgkvwimhEKhYDAoeQmm+Spp7zkOnivFh3AEmQGHqWeG4hdTpn06khnqFDOjvLw8kUioXAcTiUR5eblpJz7JDAfPVafFSfDWmeE+Az6Vy3cp6jM/93RxQ0lJyalTp1Sug6dOnSopKTHtRJIZpuGa/i2Wh66SDp6rTumJ0n1G6SzUc0VmwKeyzoyM1meRGaZPOfvdlPp18MSJEyNHjpS8BGNmWN1CmUZI4XPqXEkCwPYdL6hzRWbApzLNDPmXMFmsl3wSN20sP9oUx7+bisfjFRUVkpdgPDxJZpiuL3BOnSvdgumzVmu8cq4KCpkBh2Vxn5FpMBifkn/e7MwkHkw5/ht4OByW9GkacppBemPdtoXPkXM1mDKD+wz4gvFCZkq3iWk/tmvS95jdoWaxVUaam5vV//2o5G9jWGWGpLFts0LjyLmSv1gyww1kBmBPfT4r/n9qdXV1kk5UMsPr9xmdTpwrxcxIX5B83TewyAxg8Mjz3w4xzYxO619rbL+aK0w5niuVl2waEl48V4WDzADsZfc3CsPhcEtLy+nTp0+ePBmPx8PhMH93TyfP56qQc4L7DMDXYrFYQ0PDuHHjLr300hEjRlRUVDQ0NPjt73srys+5KvDbCzIDGDy8Mp/hXV4ZY2QGYM8r8xlwG5kB2CMz4DavjDEyAwAGHpkBDB5emc/wLq+MMTIDsOeV+Qy4jcwA7KUyo6EXyyy7tFz4yAwAgCoyAwCgiswAAKgiMwAAqsgMAIAqMgMAoIrMAACoIjMAAKrIDACAKjIDAKCKzAAAqCIzAACqyAwAgCoyAwCgiswAAKgiMwAAqsgMAIAqMgMAoIrMAACoIjMAAKrIDACAKjIDAKCKzAAAqCIzAACqyAwAgCoyAwCgiswAAKgiMwAAqsgMAIAqMgMAoIrMAACoIjMAAKrIDACAqkLMjL/Cg/IzNga3gX4PkY2BHjX5VqCZ0QpP8eHMcSfnxh8AAAQrSURBVAMj33N8OPLJDDjAhzPHDYx8z/HhyCcz4AAfzhw3MPI9x4cjn8yAA3w4c9zAyPccH458MgMO8OHMcQMj33N8OPLJDDjAhzPHDYx8z/HhyCcz4AAfzhw3MPI9x4cj33eZoWlaRusVt7XlyE6tljPq0A0+nDlu8NzIz6WxbTNGfmEiM2zWZ7GtsZmk8/zMHHl05c6HM8cNXhz5xqFVUJnByHecvzIjNXRsx5xuJtjeN6hnhsodiVVvuTRWPUHZ8uHMcYPnRr5kX8aVjPzBwY+ZIV8wbS9vLJlgWv+5mtGUMw59rf/01m1lusf88OHMcYPnRr5xK/mVXbILq36MjRn5A8tHmWF1oTd9ttUuCeSDWL7r7A5bZUIqzm3H+XDmuMFzI992d1aNVa7vjPzC5JfMkI9d0wbq4zLTzMhoNmZ9hJlO9Vz4cOa4wVsj32qA2WaGSqjkcoSMfFf5JTNaLb7oVIkB21Go2X35qzIx5MeseBjpjY2vQrKjHPlw5rjBcyPfuLmxB+ORmO7F6phVDoORn0/+ygzjsmTmmA5NSc+SySMZtfIBrZs28m2NjZk53uK5kW/6lNXu5H3qGjDyCxaZIbusq3/MMe1BMi1Nl6323vdQchjGxuo7yp0PZ44bPDryrXZh1bniATPyCxOZIbusS671po2tRrY8M6wmpNVObWPGuODqtGn15cxxg0dHvqRDlbGq3oCRXwh8lxmZXppNk8D0k47trk0fKm6rchitzByP89bIN11vGzZWgz+XCdjKyM8j32WG4kPFNfL1KvvKblv5kdi+NMf5cOa4wXMj39jGdqhLBr/KQ0b+gCMzZA8Vh6Dko5DxM5Gu54wywzZsrKYln7Y8wXMjX76jVrWhaDUXGPmFyUeZ0Wrx44HVZd10E0kMyPebXc+taUPfdLIZG+tel6Sxg3w4c9zguZGv24Vxj4o9Szpk5Bcaf2UGXOLDmeMGRr7n+HDkkxlwgA9njhsY+Z7jw5FPZsABPpw5bmDke44PRz6ZAQf4cOa4gZHvOT4c+WQGHODDmeMGRr7n+HDkkxlwgA9njhsY+Z7jw5FPZsABPpw5bmDke44PRz6ZAQf4cOa4gZHvOT4c+QWaGfCc/IyNwW2g30NkY6BHTb4VYmYAAAoTmQEAUEVmAABUkRkAAFVkBgBAFZkBAFBFZgAAVJEZAABVZAYAQBWZAQBQRWYAAFSRGQAAVWQGAEAVmQEAUEVmAABUkRkAAFVkBgBAFZkBAFBFZgAAVJEZAABVZAYAQBWZAQBQRWYAAFSRGQAAVWQGAEAVmQEAUEVmAABUkRkAAFVkBgBAFZkBAFBlmRmRWJKiKIqibIvMoCiKolSLzKAoiqJUi8ygKIqiVIvMoCiKolSLzKAoiqJUi8ygKIqiVEv76YdtFEWll9bfgB8PRRVO/X/+aZqF7/pUqAAAAABJRU5ErkJggg==" alt="" width="413" height="274" />
3、固定方式和灵活方式的源码
using CreateXmlTest.Model;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.Xml; namespace CreateXmlTest
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
} /// <summary>
/// 固定方式模板
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void btnModel_Click(object sender, EventArgs e)
{
//创建空的xml文档
XmlDocument xmldoc = new XmlDocument();
xmldoc.LoadXml("<?xml version='1.0' encoding='utf-8'?>"+
"<bookstore>"+
"<book>"+
"<name>我不是一个人战斗</name>"+
"<author>吴京著</author>"+
"<price>99.8元</price>"+
"</book>"+
"</bookstore>");
xmldoc.Save("测试1.xml");
} /// <summary>
/// 灵活方式模板
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void btnModel1_Click(object sender, EventArgs e)
{
XmlTest oms = new XmlTest();
//获取保存xml名称
oms.Name = this.txt_Model.Text; //判断厂商保存的xml值
if (this.rad_3shape.Checked)
{
oms.Factory =this.rad_3shape.Text;
}
if (this.rad_ruike.Checked)
{
oms.Factory = this.rad_ruike.Text;
}
//判断压缩格式保存的xml值
if (this.rad_3oxz.Checked)
{
oms.Compress = this.rad_3oxz.Text;
}
if (this.rad_zip.Checked)
{
oms.Compress = this.rad_zip.Text;
}
//判断保存的xml值
if (this.rad_web.Checked)
{
oms.UpMethod = this.rad_web.Text;
}
if (this.rad_ftp.Checked)
{
oms.UpMethod = this.rad_ftp.Text;
} //MessageBox.Show("厂商名称:"+oms.Factory +",压缩格式:"+oms.Compress+",上传方式:"+oms.UpMethod); //创建xml文档对象
XmlDocument xmldoc = new XmlDocument();
XmlText xmltext; //加入xml的声明段落
XmlNode xmlnode = xmldoc.CreateXmlDeclaration("1.0","utf-8",null);
xmldoc.AppendChild(xmlnode); //添加一个根元素
//创建元素节点ModelConfig
XmlElement xmlele = xmldoc.CreateElement("","ModelConfig", "");
//创建文本节点
xmltext = xmldoc.CreateTextNode("");
//创建元素节点的文本节点
xmlele.AppendChild(xmltext);
//绑定元素节点属于xml文档
xmldoc.AppendChild(xmlele); //添加一个子元素
XmlElement xmlele1 = xmldoc.CreateElement("", "Config", "");
xmltext = xmldoc.CreateTextNode("");
xmlele1.AppendChild(xmltext);
//创建元素节点的属性节点
xmlele1.SetAttribute("id","1");
//绑定元素节点Config在ModelCofig下
xmldoc.ChildNodes.Item(1).AppendChild(xmlele1); //添加第二个子元素
XmlElement xmlele11 = xmldoc.CreateElement("","Config","");
xmltext = xmldoc.CreateTextNode("配置2");
xmlele11.AppendChild(xmltext);
xmlele11.SetAttribute("id","2");
xmldoc.ChildNodes.Item(1).AppendChild(xmlele11); //创建第一个子元素的子元素
XmlElement xmlele2 = xmldoc.CreateElement("","FactoryName","");
xmltext = xmldoc.CreateTextNode(oms.Factory);
xmlele2.AppendChild(xmltext);
xmldoc.ChildNodes.Item(1).AppendChild(xmlele1).AppendChild(xmlele2); XmlElement xmlele3 = xmldoc.CreateElement("","CompressMethod","");
xmltext = xmldoc.CreateTextNode(oms.Compress);
xmlele3.AppendChild(xmltext);
xmldoc.ChildNodes.Item(1).AppendChild(xmlele1).AppendChild(xmlele3); XmlElement xmlele4 = xmldoc.CreateElement("","UpMethod","");
xmltext = xmldoc.CreateTextNode(oms.UpMethod);
xmlele4.AppendChild(xmltext);
xmldoc.ChildNodes.Item(1).AppendChild(xmlele1).AppendChild(xmlele4); //保存xml成文件
xmldoc.Save(oms.Name+".xml");
}
}
}
4、固定创建的xml文档和灵活创建的xml文档视图
1)生成的xml文档在项目的bin下面
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAuoAAAEoCAIAAACBzUPTAAAgAElEQVR4nO2dW5Ac1ZnnK3Yfdh8m/DBv3ojZfdzY8MY8LLOEo+cJcMREzHhsb9hhZjG2xQzUmGVbGGyPMVh2IxAlGTooPBipAXkLJEsaNUgIQUHpLqGWuqWWRHar1ZL6plt3ly6tW6vvl9yHzMo8l+9csrpu2f3/xQlQV548eS6Z5/vnd75TlXABAAAAAGJFotoVAAAAAACIBuQLAAAAAGIG5AsAAAAAYgbkCwAAAABiBuQLAAAAAGIG5AsAAAAAYgbkCwAAAABiBuQLAAAAAGIG5AsAAAAAYgbkCwAAAABiBuQLAAAAAGJGIn/1GhISEhISEhJSjBK8LwAAAACIGZAvAAAAAIgZkC8AAAAAiBmQLwAAAACIGZAvAAAAAIgZkC8AAAAAiBmQLwAAAACIGZAvAAAAAIgZiXMAAAAAALWNKF+qIpoAAAAAsOiRZUepyoF8AQAAAEBZgHwBAAAAQMyAfAEAAABAzIB8AQAAAEDMiI18WbZs2QMPPDA+Pl7jZZKMj48/8MADy5Ytq/B1Fx9eT6L3agfczLVGfEdEX/M4tiuOdY4R5ZUvQ0NDH3744ezs7AJLL5PRqop8KbotN27c+OpXv5oo0NjYyB795JNPVIc8GhsbA/1kU6CGIoa1sbExwVB0t9eIfCn6xhb6/JNPPilH9Yx4d4twPziO85WvfEX40EjwEAlDXMR9tRAwIgHxHRHNhFyqB3/hc9dXvvIVx3Esz4V8KSukfPnjH//YwFBcOQnXdT/88MOGhoaNGzcuXMGUg0j3ljfNFTe7Cd6X4li2bFkw73iTHftn8FB5Ux47Q3mfyJOjpkA9RQxrY2Nj0NXVlSALGceA4m5sbx5kL/3000/bT4VGIjWtsbGRnYiLvkXlh4i9G4sm6jBhRALiOyIVMPYLnLvciJoS8qWskPKlo6Pjww8/fOmllzz5Mj8/HxzaunXr6dOnbcpJuK47Ozu7cePGmlUw8ZIvAkHl5cLZ5y3497Jly/QVsO+NIoaVnAKq8qZbEvlSRA+UxIToidQ0QUQ2NjZ+9atfvXHjRtSL1oixxIgExHdEKmDsFz53uYWusHnZg3wpK6R8OX369IsvvtjQ0PCHP/yB9b5cvHixoaHhxRdf7OzsNJbjx75Eul3kwQ4+YQ+x/l7vcZLvJza/Ny94+dkZQXVvyeUL/sPGxkb9FV1+Nefhhx/WxL4E3pFI7uugEFkKkLNVCeWLG30WEKYAdir0rvvyyy+zi0qaPtH0HjnLsIfkcXSp4S55D3h3oGa+M3YC2zTyfiabpu+f4M6RbyHvbgnKFHpP/xCpjKWqJjaPm757PTAibM1jNyJBzVtbW4NasVOW/MJGNr/ktZLliyuJS1VPaloUyYK8/PLLJX8BXgTIsmN0dPSVV15paGg4fPjwF198ISweHTlypKGh4ZVXXhkdHdWXE4buTk1NrV69uqGh4eDBg/raCI8Z+wwHQyuMelNTk/yhy98K69at88oU3m9Ig02W70ovH/orendekHnZsmXsjavJKS/9kLDZHMf5i7/4C3Zukj9xTfLF8ros9sPqUt6XoIZC57imPhF6L7hhhMEVlsMcx9m3b59rGsdguEvbA0ZvE9kJqqap7mf5/VhTiIe3YPG1r31NXlgMek9YfPSuoolDJ42lqiaWj5slGBE3tiMStFEQi/KDH4hF9vUjkmlfyNzlwc5gmjHVtEhvQYRlTfluXJQcP358bGxM/nxsbOz48ePy57Ls2Lt3b0NDw5/+9CfXdTs7O99//30hw+bNmxsaGvbs2aMvpxjvi/BKxCpcjbPBtVCyAZ988olcJptBNa/Zyxf5kLC+o8npWjiNvRqSJlzTBI18EQq0YSFvMPJsy7bX2CfCLMY2M5hTNKt1wjgWvYwVqQdIQckidIKmacKJ7P0sNM2mEC+PfL8Jj4ZQPfaojbHU1MTycbMBIxLrEZEb5WoffLaNkRbaSuJ9CXpJP6aaFi3EgixK2travBUfQcGMjY15y0BtbW3CKbLsWLt2bUNDQ29vr+oqFy5caGhoeOutt/TlFBn7EtwrgpSRpbfs7dTIF0+9Cp5GUr6Q5btR5Iv8/KvkCzlT6BeqPVUu+Bhl+WLvfZELNFLcsKqcz+RikKZPhN5LSJC+9wDSopS7B2yMpdwJZNOC/PL9TCozTSFeOffff//9998vv+uTfnvvT3ZCtzGWmppYPm5GMCJxHxFjzeXFoyCbvXwpSeyLK6k91ZhqWrQQC7IoCWQKq2DIDwNk2fHyyy83NDRoZvKJiYmGhoaXX35ZX06RO4/Y1V92flHNJiq5KijZ4OY2el/I8t0akC/BtCLkLzr2RVWgkYVH7wsVW4h8IStvL1/Y/PKUrSJqDxhj/Ww6gS2KvJ+jOpaCRTpVpIWqesUZS01NjI+bEYxI3EfEWPOSyJdSzV3BFfU9CfkSCVas3Lt3T69dXEp2eBuOpqamVJeYmprywl/05RT/vS/egyp8TwkpNYKnXR7dIL/w6JLeSFVN2CAM8q2dvKJ8X6oWpyMtHsl+SLYmbCHk8ybLF1WBRor77gRL+WK/eKSxQMZD5HQjxNxoKO47LTS9bdMJQSVV97NRYbMI96Swa7e0xtJyp4bmcTOCEVmUI0Iuii1EvpRk7mJ7T9+TmhYtxIIsYljJotcurnrxaGBgQFX+wMBAQ0PD2rVr9eUU/6273sP2ta99TXj5CJTpunXr2JzyKqP31AXyJXgCPVVrjH0hyyfFMnlF75Aw9SQUobtCiJbKgurnDraeqrcBYforLhCvaOzli2vqE03vOY7z9NNPqwphZ2E2pJcc7pLjzVbCF3t8+9vfFt4sVZ0QNE1zP8u3qKZ/llEhR+wNXEJjqamJ/eNWcjAitTYiwjypevAXIl+KQJi7PpG+YFA/pvoWFWdBFjeBgtFrF5eSHfv27WtoaNi0aZPqlE2bNkUI3S0C4bn1EGS4t74oTD0PFPYueo+6YOS8m6O5udnofSHLd5mdbN4zrLkiW0gikWhubiYXj4Ri5SsGkCuswjufsOwqN4q9+40FlpZI8sXV9ok8cQc55Vk7OMS2XRhH1XCXA7a2wvREOqjJpqnuZ7lpqkK8JssrdEFHldxYappj+biVCYxI7YzIMmazugf5Blt5+ZJgIC+k6UlNi4q2IIseT8HotYtLyY579+6lUinVnrKDBw82NDSkUql79+7py8FPNoKyIMzjAACwuFkisS8sY2Njeu3iKr627syZM97X1m3atGlgYGB6enp6enpgYMDzu7z44otnzpwxlgP5AkqPHOgDAACLG2Oo9dJE9ZONXV1d3pfXCbzyyiuydiHLgXwBpaes4SkAAFALNDY2Bi9pZDQFcLW/OD02NrZnz5633npr5cqVq1atWrdu3b59++xDgCFfQCkJVpfxCgIAWPSwsS9LatnIHo18WWA5kC8AAAAAKAuQLwAAAACIGZAvAAAAAIgZZZQv5wAAAAAAahtRvpREFgEAAAAAVAzIFwAAAADEDMgXAAAAAMQMyBcAAAAAxAzIFwAAAADEDMgXAAAAAMQMyBcAAAAAxAzIFwAAAADEDMgXAAAAAMQMyBcAAAAAxAzIFwBizODgYLWrABYERjDuYATtKW1fQb4sQtra2h544IG2trZqVwSUHUydcQcjGHcwgvZAvgAdbW1tTz75pOu6Tz75JBTMogdTZ9zBCMYdjKA9kC9ASaBdPKBgFj2YOuMORjDuYATtgXwBNIJ28YCCWdxg6ow7GMG4gxG0B/IF0Pz+97+P9DlYBGDqjDsYwbiDEbQH8gUA4IOpM+5gBOMORtAeyBcAgA+mzriDEYw7GEF7IF8AAD6YOuMORjDuYATtgXwBAPhg6ow7GMG4gxG0pwLy5Vrziue/2dRlPPnyzje+uez5by57o3nYdYf3L/f+AQCoFIbpYHj/8mVbWsO/uxqjPKStTc8v33lNdeiby9Rpxf7LQdYTW8I/g/oM71/OncJWcmmhHcFrzSuebzxR+IvtSdd1h/cvD2fprkZyIJq6wrOE00GJiGCSo1nJrsZlzOgvCsotX641r1DOSl5XFlQLN0ld3vmGjeIBAJQQ/XQgPJWy5vDViSAmvOdalD4cGmVzeecbdvIlKLyrEfKF5lpr0xu+CnG5nvQm4cad11g5wgw306WQL2UG8sWessoXVX9R/hjuYaC1/yLregBqDYt3d/8N3jN4oeY4seWb5ExaeK7DtxThbd51XWv5Qhey7I3mE5AvPuYJPZB6wZSrsIKQL1UB8sWesskX1XTmdjUuo6Yq5mEg5jKsJQFQfnTTgf9EX2te8Xxjk/e0er7VN5aveF5pyfznml9mGt6/nM8P70upUI2gQvnRb4nqtbw3mndCvpSXiPJFf6tfa14RPFmBfGE/jDdlkS/MjONNcIxyFwUgtbok6pjF090A1DLq6cBXKr58YeMnAsNGvl2c2PLNFfubm3jvqWT5oskXOcwFsS8F7Cb0rkZfiGxpXKHsLmZQ4H2pHAsXoOGjJMr6wjOodC7EjErsPAq1vPp2FyepwolQLQBUDN3U2bSlkfW+MKs/l4evhQKiqUtc/F2xpXHFlmYmbkZ+rksRugvvi+taLP+F8s6zYSdY5ceaNHatgepSyJfyEMEkm1QI/6CxA2q7n6bGqYB88eYyvdYrPFeMz8bzYS7fea21aTF0NAC1j2o6aG3a0uovAPHel9Arw2Znloq4AAvPBAoleOUv3PsC+eK6uhE0hw+y8UytTaxqhHypHPYmWYw/ExAjLvjYl+H9y+MfClNG+WJydjE9601JK/a37nxj+c5r7okt3qzkT2qLoqMBqH200wEvX3x3i/8U85uSyA3VhRMLTzcLYl9KRbTICZX+IHbIB3+Gy/1wjZcD6xHsalz2fONO5SBKz5QYussr1FhSFvniKf3lO7vk16wC7ATHBwM2bWlcEb4BUK8CAICyYC9fWncGz+O1ZjF0V/F9MCf8YAvZ7C1UvpAumSVJSUJ3CcxRoqA0WJrk4Lmgnx1ivKSdR/H3C5R18YjwEhcIJzh/GNiIsEK/87Fj8e5oAGqfCN4X1xVXjkJhIbyc8C/u1HuIpXxRhMhsaeYkDrwvNnQ1Lnt++Yo3lB4UURFqQ0RB6bAaQdaFSW3LpR4owobGPTCj+vKltemN5uFg7uM2GbFjgC+yA6DcWMgX/4/LO98IhYu/kLSldfgaK1+4PL522dJIKZgI3hfXvewtMYeztrAzEfLFSFdjIeza1rEN70ulMI4g/1i5rmvpR1mELoCyyxer2BeXDgTDziMAKom9fPEouEMINzX7dl5YTeb+FJfhrXYe8f4bT8HsFIJpIF/UFHwqnBnzP9TuroB8qRS6EfTeE0i5GbxCKE+GfDFQjPfFh5Mvge5ZDHvTAYgLtvKlsE2afrrF8BTSQR06ANxIi0diUdeaVzCrV8x27qWJagS5LdM0he3uTV0GNckry/K0Y+mi3TtmMIh+hBN7/7NfibTo4kfxi9MAAB/82m3cwQjGHYygPZAvAAAfTJ1xByMYdzCC9kC+AAB8MHXGHYxg3MEI2gP5AgDwwdQZdzCCcQcjaA/kCwDAB1Nn3MEIxh2MoD2QLwAAH0ydcQcjGHcwgvZAvgAAfDB1xh2MYNzBCNoD+QIA8MHUGXcwgnEHI2gP5AsAwAdTZ9zBCMYdjKA9kC8AAAAAWNJAvgAAAAAgZkC+AAAAACBmQL4AAAAAIGZAvgAAAAAgZkC+AAAAACBmQL4AAAAAIGZAvgAAAAAgZkC+AAAAACBmQL4AAAAAIGZAvgAAAAAgZkC+AAAAACBmQL4AAAAAIGZAvgAAAAAgZojyZdWa14pIVak6AAAAAJYmxciXQ4ePeP9d05j+YPsOyBcAACg/TqY+lctXuxYA1AaEfBmKyFKTL9lkIlGX7ql2NQAAS418LlVfn3Hog06m3gQvfvK5VH19fX3G8f+hzcyfBxUFqo9OvkxrmZqampqampycNMmXbDIRksyWry0WtRAu35Oui16nQL54Z8tA24DagLNnosFhDpK2KJ9L0YaSLVXKINtXqhxtxcRydJlNjbBokbY5Nldibb+mgGKgZYVKZjgZ7vpScwu+m7DUwmFCj2gdPflcCm6gGKF8lgsHlXeukyEe58ItJ+jlyt8RtHx5q+ndt5renZ6eTjzXLaTp6ekmhomJCY18keVBNlla455NWsuPnnQdLy160nXF6CnC+1Iah0yEtgBghDNAToabX5xM+Fc+lxKmnsC+SXOak9HbaF69KMrRVUwqR5M5n0vxl9LbW6pFbHs007i6u7gOMfVOZLRmh6qllXyRDxvki4VbpwzaDZQC9bPMH7eSL8Ijwj4WpiewLBi8L4nnuv/8xfN/9ptz/+HXZ//dr3z5EvhdJiYmdPKlEqsskUw+J2CKFC+QLyCeMHON6CJhX6aDf0vvXeRHPExBunKUFaMqZMwcnkJfR1MToTRFGZruEotUVq84DApEuPqC5IvGq4OQm5hifgbzuVR9KpNRr0iyZ0rqXLjbjU96yTF7X1jtkniue2pqivW+jI+PK+RLT7pOZ9I9i5/11l+CfOx6DHcye8A38cLaTZhdWQijWSTx4mmH8FRxeSjMG0G+KGsSLqh55SrbYipN8m9lk+zfmq4AS4xwrpGtNGV1SWOvt2Kk8S5CvmhEQBHyRVMTQSYJ6svcXbLMKu0U7kkMRmhwkkTsC9vYFzFfxjF7X1K5vHYpC/KmllHclf7tq3t0gjOpTPwNaPEElhqz94XVLp58Cfwu4+PjSvlicm74BlxUELyQCY10kvyc8FioC2E/qpMq59XHzxtYfT8Ppwls5YuyJtyBbFrdFqvS2CN8p5u6AiwhWNeubHQpb4c05XkfMDaMOkM2YwaDTvic1epF6aC2mjqpmgjSgHKFa7pLumyJp3C/dkzFmX9K9YrkfYlSU9UCnn8vQLrUOuQzyIlwvXxRPHfcg1p534uN94XVLonnuicnJ1nXy9jYmFq+6Kwl7yXwT+CMt6oEzsoLJt+mEDpeV1AgQvXYo3byRV0TpbDTyBd9u/zL8wVb9ydY9LDhdi4lD1SvVpJ80a11K+Yv3bQmVEx/ApE51FI2JpQq2CL6UNtdnEM92MljrIolBa9IqB9CzSKpF1GuaOWL35mpVMbRuG1CzUSGTEO3xATa78gFfWnkC3cv0Aer5IEze1+ExPpdxsbG7t27V7x8keJoZTidovg4NNKmQgrXTSZJ74uwBsNUj22NlXzR1aRwTOwetXwxtqtHWISz6gqwFCDekGl7bPK+KCJ8OdNNzYF6NSJdli7H+J6v3T6hqolwkqIMU3cxk3jGKe07KLtXSIy2kTRFFPmSz6VSKT/sgS1FuTkrlcuZlqYgZmoWfYiWxeIR7X4hiqnsTVCMfGG1i1K+mMJZSfmiMK78pmeN98UYjhs4VRSxL6rqFSdfdDUJ5IVmISxyaaJ8gVhZ2ii8AUXGvtDW3/gGp1qyodUGUY6tT8MqyEa/0kO2wq67wrwlnMGD5aBQVhSuIHtEdKEpgsRwMvWZnF+kk1HE83LVIPeGccIP6qV2ofYPabxt5JnEFkEq+Kqit4H5e1+EfUaCdhkdHVXtPJKWh6SjUjQrLXf4I3J8h1p16GqkD6JZqHyx3IwkBdVoBJy6NL92vMML36631FFv4xWtDWl9SLUieV+U4TTqcnT7i+lYWDt/Rrnki113BUdKuP7PyAbejGQcWr1oF5NYX44fsMlqT7U1I1ulChoCNYj+0bAK3S3kE7a61bR8MWoXjXwp+AQEHwsVv8rk5lwp3h+sjffdDHR4qq4QQk5lkwk+oqWU8kVdEyYOWYji1YTfGNpFhe5qTgFLAO2UxU40itlLsXGa3Eapm7fMXhy6WjaZxTfKqDuP1N5v3hOu7i7Gd1Fy5zm7H0iQCIQ/hJSbpHxxMhnHLEq0n5VcqYFyUhr54hYWStkpoNYWj0r7k418DIbBOcBlJgM56tI9hNDgspOFkF+6y35acvmiaQ4Tx8OfxbVFXP5Rt0vqKV7BkJcCixz6jVqYbJQ+Y1c15ZGnad+6SJ8HXTFFkKyyFdxRsy0lW6QoQ5yL1d0Vhr6UeOrW7FO38L2Ydh5ZyxfNplvIl5hQMvniclHb8g78EtfbhChfAAAgEqUKV63G1svapSAPLL7NhftqmIDCZ4qt7nmbC6RyuYykgapmrQDggHwBACyAUn3VSYm/MgUAsMiBfAEAAABAzIB8AQAAAEDMgHwBAAAAQMyAfAEAAABAzIB8AQAAAEDMgHwBAAAAQMyAfAEAAABAzIB8AQAAAEDMMMuX2bm5mdmZeXe+ArUBAAAAADBikC+3x+7sadmXO7j3WMfxzrNdvZf68yPDYxNjk1OTM7Mzs3OzlaklAAAAAECATr5Mz811D1/fsWvPO5u3vr25Of3uu6++9WbT++9t2bH9g093bM9+fOjo/vzVyxWrKwAAAACAq5cv1+5NjE/N3Juevn53tO/ayOHunuYDR9Z9nHt18/ZXt2xf/f6Wxj9tafrjv/afba9YdQEAAAAAlPJl3nV7R+4O3Rm7cufewM2752/c6bp+u3345p6L+a1nL739Ze/qls7VB0++9vrKLz57r5I1BgAAAMASh5Yv8657/sbtG+OTZ67dcvIjZ67f6rx6q/XKtd19g9u7L2RO9aRbu1Ye+nJ7Z2/61Rf2fLSuwpWuLtlkIlGX7ql2NWqannRdIpFIJOrSPeguAJYyTqbe+FPiTqY+lcubPgKAg5Yvdyenu6/fOTtyp+PqzbYr1/f0D+0dGN43MPzx2Ut/cnqb2s++duT0i/tOfHlh6OWGpz/d9Kr2EtlkIiSZLUcrLPBqIVzes7IR6xTY44KNFlnyxppVLD3pOvRItXAy9SGEeVAdcl3XdfO5FG102FKlDPlcSviUKkdbMbEcXWZTI+xapD1kzhapEsXA9YC2L8UK5HMp6hxulPw80iWcjPamMWsS/jRd14RSJZ9L+f+EfKkIhjvfyRCPc304RJp7rwLQ8qXj6s3WoZGjgzf29g8dupjf3TfYfGZgY2ff+07vuyfOpVtPv3LYWXe048ylwd++8OT2zEpV6bI8yCZLa8qySWv5IRnSnnRdMXqKcCeUxsMQoS01TU+6DoKlBuDmfyfDzS+sPcnnUsLUExg0aV4zvUnz6kVRjq5iUjmazPlcir+Uev5Ut0h3yCabvicXjHdZ9ppOhu0AofPE3lTUWpYvROMFzSHXxHUytDCyJCicGeOwSMiXcmNz5/PyRbgHuDukDDe/EUK+XBubyPYN7h4Y3j0wvL374taugW1nBjZ39je1n339aNdrR06nWjqe333swLmLrafPrfjVT7Y2PU+XXYllg0gmnxMwRYoXyBcjWC6qSZi5RjRY4Ssv82/pvYv8iIcpSFeOsmJUhYyZw1Po62hqYllJdTZdT5YArddC0WJOYeZzqfpUJiMKj+jyxeQ/oWpH5Sc6mu0z4X2+CEcPsML28WQPS+8uwk1hfNJLjihfZubmDlzKN3df3H7+8gfnLm7o6F3/ZU9T+9l1x7vfbDuz5rDTcODUr/a2v9XinL5ydVdr+/P/8vjmN39OlWx4B/dsXNZbfwnysesx3MnsAd/EC2s3YXZlIYxmkcSLpx3CU8XloTBvBPmirEm4oOaVq2yLqTTJv5VNsn9ruoKDWeCT/FPUwp/ffXL/cCuFibp0j9Q33KWyxWpIEJlwrpHtlWqdQOM10V9CW47xLI2tLEK+2NSE1iXGttj1ZLHotZBVT/hFiJ6TqPKlGFVG3i0KTczcmOyrPbwv5cdWvlB3CX8LWjyBpUaUL5fvjL3r9L1/emDj6QsZp/fNY12vt3a+dqRz9WHnlUNfvnTw1Iq97S/sajt09kLnlavZgy0/q3/kvdeXEwWbnBu+FRMVBC9kQiOdJD8nPBbqQtiP6qTKefXx8wZmmTXKhfy28kVZE+5ANq1ui1Vp7BG+001dwbacFX9potGU64qvguK6ciAMnzEB+VIRWHMsGyPKPEnzmvcBszpAnWFlsVQV05ajyMwcME2d5ZEv5p4sEn2bNBeifGC8gIkoX4ozTERUhSxJ/Nup4Ajg3+UhX8qPlXxRPHeSf67SPjJOvkzOzL5z6vzvjna9cfzsH06ee+1I56qDp146cPLFfSd+s+/EC3uP/2r38ed2H3v9QHt7/+UTA1e2Znctf+I77yvli/F9nzVcPek63pCpSuCsvGDybQqh43UFBSJUjz1qJ1/UNVEKO4180bfLvzxfsGV/qmqjaBLrLWIOc6Uo5YtcZtEreCAKQoyELA9Ur1aSfNGtdSvmL920JgdvaE4gModaysbSRZEvdiXY9WSRFOl84eogKBn2Y3Xobhh8woRoShE2Fqs6ggKR9YxXvZyXTVhugnypCBbyRTnQtRW6e3L4xrO7jr2wr33FgZOvtHT87PPWn2eP/Cx75Nlsy7PZI89kjzyTbXn208N7z/SfGBhs7734x+aPnvzRA++9vnx+XvpFJBv5ol6nkBcs+FUJhXwxFVK4bjJJel+ENRjBPEeSL7qaMLuKpS6hTbmxXYI3xK4rgmzERcnPw2aKh63kC1Em5EvZYV9vfWija/K+KCJ8Te/wBjUiXZYuR5FZzFC6xSO7Eux6skj0RUX0vhT+8OpfhPeFuJZZqolhLfKuqVQurxAqkC8VwW7xSO2MFBaPKjtknHxZ3dZdv+fk07vbf7rr2NOftz7xwd7HP9z7+If7Ht++74lt+/552/6fbNu/Zu+xrkv5Y32XT57ve3Pjvz358F+99/r/nSN+/MgQwEnKF4Uh4zc9a7wvRmsYOFUUsS+q6hUnX3Q1CeSFZiEscmkqf4jhRMiXRYrNtlnXdS1jX7Rxq2pTRs2PiorR5agzmy9km6FI+VLe2Bd9WVFiX7hDhcWACLEv9LWsV+xSOUcnxXyhogzbrdKr/dLAOnSX2CJIeeUqOk6cfGkbvL7uVDm1+PgAACAASURBVO+vW84sP9T1T7n2x3cc/vEH+36wedcjmz9/ZNNnP9z8+T9t3ZXtPH/60tCx3outHZ2N69/76Q/+x4b0U3OzM3LR0vKQdFSKZqXlDn9Eju9Qqw5djfRBNAuVL5bbb6SgGo2AU5fm1453eFnu/1Fls1g8iipfiDL19whYEOpNzuLbNPl2TaoVyftiju0kQ4BVU6Zcjiaz8UL2GYqUL3Y9WTT6tiuOSrtZieW2VCriziMyj+VCGblCKFwI3pdqEWHnkeThrC354rru/Pz8rYnJ87dGt3f2/P7o6RcPd9Z/fuwfd3zxo20H/mHLrl9++sXJgSttPRe+6O7LHjq8pund5//xvrdXLxsfH6MK93wCgo9FHwfBu1K8P1gb57sZFGGimkIIU8nFrJZavqhrwsQhC1G8mvAbQ7uo0F31KdqSs0l2MxQf/sOfFFm+iFHCCN0tJ9p5yWia1JtEqG2UunnL7MWhq2WTWdhLU/GdR65VTy4A2fSzESJyo8VXZEJOBaEukTZOUyLErCzDk4TAKfFCkC/VIoJ8cQvRLuwUUDuLRwHz8/OTk5O9fRda20919F/edabvzRbnhT3t+7oHTg1cPnK2v6W7b+un2ca31//m2Uc2/7/0zAzhffHgYzAMzgEuMxnI4X8LvbhTmM1OFkJ+6S77acnli6Y5im3KQltIiUC2S+opXppIlyJXzqjoGC7gSLfUZylfpEth8ahsSAGZgguePW696KM4TfvWRS640BVTRMIqW8EdNcuGssgXi55cIHwfkLFCyl4gvUHCapydfAk+0lxNrhW5DEiUCvlSLaLJF5eL4Le+HcqF7henXdednZ29fv364OBQf3//8VNO25edpwcuOxcGv+wZaNr8b+s3bhocHJyamqpMXcGiA/JlMVCqLZPV2HoJSozOzcLnYV/iIV9AERjkS8D8/Pzc3NyNGzc6T3cebTvaduLk3oMHpqeny1o5sMiBelkElGrFpArfegUAiDG28oVlZmZmdHSU2CwNgJYw9Ml15YUvAAAAwJJi5AsARcOF08DxAgAAoCggXwAAAAAQMyBfAAAAABAzIF8AAAAAEDMgXwAAAAAQMyBfAAAAABAzIF8AAAAAEDMgXwAAAAAQMwj5Mj09Pa5mdna28rUEAAAAAAig5UtPT8/vKD777LOJiQkoGAAAAABUEVq+tLW1PUjxt3/7tzt37oQPBgAAAABVRCdffvHzX7S1HmPTt7/9nb/7u7/buXMnfDAAAAAAqBY6+fLSSy/fvnWHTd/97vcefPDBv//7v//ss8+WrA8mm6z9Hxrkfso5DhUGAAACJ1Nfn8rlq10NUIMY5Etvb993v/s9LwXy5cEHH/ybv/mbDz74YGxsbG5uznSJ2viRPq8WwuV70nXR6xSoAe9smRqQCpAvwPVm/gDRBDAHSeuQz6XqM46hVClDPpcSPqXK0VZMLEeX2dQIixZpm2NzpXwuZVNAEbAl2zWxRhEbEqUlkC8LwHYGUN64ToZ4nAtFcaVXY5QM8mV4KL91a7OXbt+6s2PHx96///f/fuSb3/zm8PDwzMyMpnRZHmSTpTWk2aS1/OhJ1/FmnLPx0S4pNKI0AiFCW0xAvgDXyTATipPh5hfWJuRzKWHqCayNNKk5Gb2N5tWLohxdxaRyNJnzuRR/KfX8qWoR2x4vj1Kx0d3FdYipd6KSz6WYNhmaWMvwDdF2tQTkS9GYZgDLOz88IGTkhqYat2e0xaMgPfnkkw8++OCVK1d08qUSZjOSyecETJHiBfIFxBNmrhFdJKx1Cf4tvXeRH/EwBenKUVaMqpAxc3gKfR1NTYTSFGVouksssrS2lrT6pXXwVAZqPG27CvKlVLA9aXfn8ze4pM6FQoxPeskxyJeB/gtPSozcuGkhX3rSdTqj6dnUrLf+EuRj12O4k9kDvlkW1m7C7MpCGLMuiRdPO4SnistDYd4I8kVZk3BBzStX2RbhCkQ3yEUmEsk0IV8054IlQDjXyHMVZSJIY6+3I6SlKUK+aCxWEfJFUxPBrArqy9xdslku6RQuFR+W7lXB8ZxK/BuwckGAW/9y2FZRpdFrYl4NwmNBN2gXIUg5SqlCYh3C72x1ddiCqb/pJi9BRB8ifefL52Qcl36++N6ugrgW5cv8/PzU1NTIyMjZs2evXLkyPDycSq1+6aWX2WQlX0zODd/aigqCFzKhpyRJfk54LNSFsB/VSZXz6uPnDSy9nyebTGidGaR8UdaEO5BNq9sid5eg84LcXAXFviXPhTtmacG6duW5SvV2LBlt1nJZvk8bDDrhc1arF6WD2mrqpGrCxMNwnSDIF0V3SZct7RROeV8Ytw/xLiw6+gVhw7n9xVUvQUtkyFUBL6eocPwTlYtntHVkP1WvQ/h1Ux9UyRd9k5cc4rOjuvN5mIeefrS5ZdRKdy4nX+bn5ycnJ/v6+n77299+//vff/jhhxsbG69cuTJ6dzTy4pHB+SIYXP8EznirSuCsvGDybQqh43UFBSJUjz1qJ1/UNVEKO6N8kcrzP5EvLy0eKc8FSwA23M6l5IHq1UqSL7q1bsX8pZvWhIrpTyAyC14AA1TBFtGH2u7iLLZfnTLJF32YjWIJjnPWKIfcELTDdByxXqBxhtANkasgBVWLQk2OHqXbxfxtd5cvEYhnxy7uNsyleLTNRZQRTr7MzMz09fX9+Mc/Dr6n7qGHHnrqqafy+fzGDRtXp1Z7ydr7YpIvUhytjOhRoD4O7bCpkMJ1k0nS+8J8IlSPbY2VfNHVpHBM7B6TfFFdlBAjptgXhMMsGfLC+oKrmthN3hdFhC9nuk2r54aKqctRZBYzRFw8Ek5SlGHqLmYSzzglXzxSmAexUmS3cYtcxLqZsHhErPrVM00LPmQKIkIooskXcfFJviRRt/AjtXwxNXnpQD07dne+G4w37X4hFo8qK2E4+TI+Pv7b3/5W/rLddevW7dq1a3n9ci/Zxb4YLCQpXxTGm9/0rPG+GL0KgSNCEfuiql5x8kVXk0DfaBbCtFeAfAEmFN6AImNfaOvPbl6w2LugrRhdjq1PwyrIRr/SQ7bCrrvCvOUL3dVUocTyxZMu7OHSyxfe+aIcOsiXBWA9A6j6ho+2MqzyVjzKWpQv3//+92X58swzz4zdG4u680hesxCPStGstEXlj/DGWq86dDXSB9EsVL5YCgQpqMZ+8Yi5gHwtqVxNgBBYpKhXBDQxFfzpKoe+9IFx9dyuYopYWDubUy75YtddwZES2scI8iXy4pG0FKW2Q2yvlE6+sKfq7J58AzC5xQHTLh7Z30qLBG0sUlT5Qvhoak6+PPzww7J8efbZZwcHB7dv2x6kRx75gXnjtO9hEHwsSpMrxqT0pOvC0A5huxEnX+Q1KKIQwopnk0ztSi1f1DVh4pCFKF5N+I0Y6UzE6vJSzPpcsEjRWnMpxFHOSZyvjL4wmR+9F4eulk1mIVA16uKRxvvNe8LV3eVk1MFACyaKfJF6gLddwrszEbor2iHOr1Zi+cI7d4jK58Ov9BFDbol28Vm5mF9lkxnEO9kYiRwTdDOA7boPMd6q26bai0cTExONjY0PPfQQq10eeuihjRs3bty4UZY1JvniumIQSB1tuMnMgnoIPiSEBpedLIT80l3205LLF01zmDgewmlS+JRYAMpa7pvORjsXLELoeAJhsuHjGnjoyY88TfvWRfo86IqpbLKqFdxRs50hW6Qog9qnQV8pDBEp+dQdSb7wdSGqwx70N5OoY1+4oOiSLB5xqJYNibp7l3CU/c+c54UeiZHFdJPFEohF0JgvNkWZAbQyh7rfg+fVMKrlRQzdvXz58lNPPcVql1//+tc3btw4ePDgNolbt24Z5QsoCVjuATVLqcJVSxr2CvTE3DYXwxJs8iJH3Dg9NTV19erVdevWPfPMM88+++zGjRtHRkYmJiYmFSzNX22sPJAvoEYplVGAcakkS7C3l2CTFzvEt+7OzMxMTEyMj4+Pj49DoNQIkC8AgKLJ51Liokrlv6ajsizBJi81CPkCahDIFwDAQuAiFZaGF2IJNnlJAfkCAAAAgJgB+QIAAACAmAH5AgAAAICYAfkCAAAAgJgB+QIAAACAmAH5AgAAAICYAfkCAAAAgJgB+QIAAACAmAH5AgAAAICYIcqXVWteKyJVpeoAAAAAWJoUI18OHT7i/XdNY/qD7TsgXwAAoPw4GfxsDwAFCPkyFJGlJl9q/+eHsslEIpmtdi0AACVG+6vJ3C/80PDiJ59LeT8G5P9Dm5k/DyoKVB+dfJnWMjU1NTU1NTk5aZIv2WQipGpW1auFcPmedF30OgXyxTtbpuraBvIFuK4r2DPR4DAHSVuUz6VoQ8mWKmWQ7StVjrZiYjm6zKZG6FpE22xaHdB1iFJCUaguwFOoj5Phrix1fMF3E5ZaOEzoEa2jJ59LwQ0UBxb87DgZ4nEunCDo5crfEbR8eavp3bea3p2enk481y2k6enpJoaJiQmNfJHlQTZZWuMewVL3pOt4adGTrivGzBPel9I4ZEqmOkotXyCHYglngJwMN784mfCvfC4lTD2BfZPssJPRW2devSjK0VVMKkeTOZ9L8ZfS21uzspDmavsKG0ooEqWEVF3cSr7Ihw3yxcKtU1LVBkpDCZ4d/ob2HqPgb3YWMT2BZcHgfUk81/3nL57/s9+c+w+/PvvvfuXLl8DvMjExoZMvlVhliWRZOQFTpHiBfAHxhJlrRBcJ+zId/JuwxEbjzBSkK0dZMapCxszhKfR1bGti7VLQ1qGkE7hBgQgNWpB80Xh1EHKzOCji2eFuMendRSiwxNrdArP3hdUuiee6p6amWO/L+Pi4Qr70pOt0Jt2z+Flv/SXIx67HcCezB3xLKqzdhNmVhTCaRRIvnokOTxWXh8K8EeSLsibhgppXrrItiuKZT8SiiLYI2oO/GH8sWsU0zZQcb9kk+7dmjEB5COcaebaiJjZ5MjJaMXJ+LEK+KOfZ4qZgq5oI0sP0RkocKsOKiicxGKHBSRKxHraxL2K+jGP2vqRyee1SFuRN7bMg+ULl4Qu0eAJLjdn7wmoXT74Efpfx8XGlfDE5N3w7KSoIXsiEtjBJfk44BtSFsB/VSZXz6uPnDYyrn4czvbbyRVkT7kA2rW6Lqvywb+miuLZ4f4WZOBXB91D0iumayR7h7wbTGIHSw5pj2c5Sllcy9t4HjA2jzpCnRwufh7V6UYoKq6lTVxPxmFq+qI6U493TVytM0cw/pUGL5H2JYmxUixD+vQDpEgeKe3aYh55+tLkVxkovH5q9L6x2STzXPTk5ybpexsbG1PJFZ5QEM+qdwNlIVQmcMRUsq00hdLyuoBCE6rFH7eSLuiZKYadRCVwzwgIURSnVjqqi2tKMFVN3uH85vmDrgQalgg23cyl5oHq1kuSLbq1bMX/ppjWhYvoTiMyhlrIxoeqaWDtOyApHKiESBa9IqB/C60hXFOWKVr74DUmlMo7GbRNqJjLsE7olLhT97IS3huLRrqoHzux9ERLrdxkbG7t3717x8kWKo5XhdIriY8GXoCmkcN1kkvS+CEsdggKIJF90NSkcE7tH5+RgKsDWhS6K0HQagRJWPnrFjB3eI6wOWo0RKCHEGzItX0zeF0WELxc+odq0o1Yj0mXpcozv+UJQIYlSvti9OOrqUKZXT3avkH/d4EqSpogiX/K5VCqVqk9lMvzA07HCTqY+lcuZlqYgZmqTBT07/u1Gu1+IxaPK3gTFyBdWuyjliymclZQvChvGb3rWeF+M4biBU0UR+6KqXnHyRVeTwIprFsKk/IWaK6QSW8Ni5Ev0itk2k/YFgTITfK8H8XH02Bd6DyWzkmGvDRQVo8tRZzZfyCaDzTKKvg5lW/UPloNCWVFQMrJHxGaXdaiBMjm/SCejiOflqkHuDeP2rkC91CALfnbCA8SOOyr4qqK3gfl7X4R9RoJ2GR0dVe08kpaHpKNSNCstd/gjchiFWnXoaqQPolmofLHcjCQF1RiihbyAXDITU5RSvugXj4qpmL6Zfrfxiqv2v/ZvkaDe5CxaG9L6kGpF8r4ow2nU5eh2X8vlmLZq6y5klcEy5leTpZzqpdAZvBnJOLR60S4msb6cVC4vBARTUPHCROkQLzVKCZ4d9oDkpal1+WLULhr5Unj1FnwsVPwqk5tzpYQ2V9huREeB6goh5BQX01pq+aKuCROHLATLasNv/ON1dVyZZFFq+SLViu/bIipm6HAqdFdzCigdWmvOTjQK66vYOE1uo9TNW2YvDl0tm8zKb6Swq0lwokLUiOs1NGVTL+x+IEEiEP4QUm6S8sXJZByzKNF+FvUraUAVKMWzI+/NF6aAWls8Ku1PNvKhDoZ3cC4zGS9Rl+4hhAaXnSyEX3/izw328JRUvmiaw8TxyEErwaeyW4TfQ6QuSiNfhHOU+7mjVEzd4dIQ8gqGvBQoDYav8uCORwgIIU/TvnWRMTR0xRQxxcpWcEfNtpRskWYXNL+/RtmT5Xrn1OxTt/C9RPreF/U52iU3yJdapiTPjsJ3qtqBX+YmiYjyBQAAIlGquNVqbL2sXQrywOLbXLivhgkofKbY6p63uUAql8tIGqhq1goADsgXAMACKNXaSRW+9QoAEGMgXwAAAAAQMyBfAAAAABAzIF8AAAAAEDMgXwAAAAAQMyBfAAAAABAzIF8AAAAAEDMgXwAAAAAQMyBfAAAAABAzzPJldm5uZnZm3p2vQG0AAAAAAIwY5MvtsTt7WvblDu491nG882xX76X+/Mjw2MTY5NTkzOzM7NxsZWoJAAAAABCgky/Tc3Pdw9d37Nrzzuatb29uTr/77qtvvdn0/ntbdmz/4NMd27MfHzq6P3/1csXqCgAAAADg6uXLtXsT41Mz96anr98d7bs2cri7p/nAkXUf517dvP3VLdtXv7+l8U9bmv74r/1n2ytWXQAAAAAApXyZd93ekbtDd8au3Lk3cPPu+Rt3uq7fbh++uedifuvZS29/2bu6pXP1wZOvvb7yi8/eq2SNAQAAALDEoeXLvOuev3H7xvjkmWu3nPzImeu3Oq/ear1ybXff4PbuC5lTPenWrpWHvtze2Zt+9YU9H62rcKWrSzaZSNSle6pdDQ3ZZCKRzFa7FjVJT7oukUgkEnXpntofRwAWAU6m3vhT4k6mPpXLmz4CgIOWL3cnp7uv3zk7cqfj6s22K9f39A/tHRjeNzD88dlLf3J6m9rPvnbk9Iv7Tnx5Yejlhqc/3fSq9hLZZCKkalbVq4Vwec+YRaxTYPYKplCk6jYR8kUBq1h60nU1MFTlxcnUhxDmQXXIdV3XzedStNFhS5Uy5HMp4VOqHG3FxHJ0mU2NsGuR9pA5W6RKFAPXA9q+FCuQz6Woc7hR8vNIl3Ay2pvGrEn403RdE0qVfC7l/xPypSIY7nwnQzzO9eEQae69CkDLl46rN1uHRo4O3tjbP3ToYn5332DzmYGNnX3vO73vnjiXbj39ymFn3dGOM5cGf/vCk9szK1Wly/IgmyytxYhgqSV71ZOuK8bME2/tpXmRL5nqKLV8WSxyqCddt9gFCws3/zsZbn5h7Uk+lxKmnsCgSfOa6U2aVy+KcnQVk8rRZM7nUvyl1POnukW6QzbZ9D25YLzLstd0MmwHCJ0n9qai1rJ8IRovaA65Jq6ToYWRJUHhzBiHRUK+lBubO5+XL8I9wN0hZbj5jRDy5drYRLZvcPfA8O6B4e3dF7d2DWw7M7C5s7+p/ezrR7teO3I61dLx/O5jB85dbD19bsWvfrK16Xm67Ep45yNZVk7AFCleIF/iy9JeLmLmGtFgha+8zL+l9y7yIx6mIF05yopRFTJmDk+hr6OpiWUl1dl0PVkCtF4LRYs5hZnPpepTmYwoPKLLF5P/hKodlZ/oaLbPhPf5Ihw9wArbx5M9LL27CDeF8UkvOaJ8mZmbO3Ap39x9cfv5yx+cu7iho3f9lz1N7WfXHe9+s+3MmsNOw4FTv9rb/laLc/rK1V2t7c//y+Ob3/w5VbLhVdczJVlv/SXIx67HcCezB3xLKqzdhNmVhTCaRRIvnokOTxWXh8K8EeSLsibhgppXrrItiuKZT8SiiLYI2oO/GH8sWsU0zZQcb9kk+7dmjDiYlUfJcUY1wR9Xue3cEmaiLt0j9Sp3qWyx4rZ2Ceca2V6p1gk0XhP9JbTlGM/S2Moi5ItNTWhdYmyLXU8Wi14LWfWEX4ToOYkqX4pRZeTdotDEzI3JvtrD+1J+bOULdZfwt6DFE1hqRPly+c7Yu07f+6cHNp6+kHF63zzW9Xpr52tHOlcfdl459OVLB0+t2Nv+wq62Q2cvdF65mj3Y8rP6R957fTlRsMm54RsLUUHwQia0hUnyc8IxoC6E/ahOqpxXHz9vYP1Y21fIbytflDXhDmTT6raoyg/7li6Ka4v3V5iJUxF8D0WvmK6Z7BH+bjCNEZONU6VpYjQon5rQdvq6ciAMn1FSdvGGNceyMaLMkzSveR8wqwPUGVYWS1UxbTmKzMwB09RZHvli7ski0bdJcyHKB8YLmIjypTjDRERVyJLEv50KjgD+XR7ypfxYyRfFcyf55yrtI+Pky+TM7Dunzv/uaNcbx8/+4eS51450rjp46qUDJ1/cd+I3+068sPf4r3Yff273sdcPtLf3Xz4xcGVrdtfyJ77zvlK+GF+rWfvQk67j7YWqBM6YCpbVphA6XldQCEL12KN28kVdE6Ww06gErhlhAYqilGpHVVFtacaKqTvcvxxfsOVAq2qjbYIkhrhSlPJFLrPopcWaRIiRkOWB6tVKki+6tW7F/KWb1uTgDc0JROZQS9lYuijyxa4Eu54skiKdL1wdBCXDfqwO3Q2DT5gQTSnCxmJVR1Agsp7xqpfzsgnLTZAvFcFCvigHurZCd08O33h217EX9rWvOHDylZaOn33e+vPskZ9ljzybbXk2e+SZ7JFnsi3Pfnp475n+EwOD7b0X/9j80ZM/euC915fPz0u/iGQjX9TLAfK6AO/8V8gXUyGF6yaTpPdFWOoQrGAk+aKrCbN5V+oSlcVkKsDWhS6K0HQagRJWPnrFjB0ueENsThErbfG50ASy7a5avhBlLh75wr7e+tBG1+R9UUT4mt7hDWpEuixdjiKzmKF0i0d2Jdj1ZJHoi4rofSn84dW/CO8LcS2zVBPDWuRdU6lcXiFUIF8qgt3ikdoZKSweVXbIOPmyuq27fs/Jp3e3/3TXsac/b33ig72Pf7j38Q/3Pb593xPb9v3ztv0/2bZ/zd5jXZfyx/ounzzf9+bGf3vy4b967/X/O0f8+JEhTpKULwp7wW961nhfjEYncKooYl9U1StOvuhqElhxzUKYlL9Qc4VUYmtYjHyJXjHbZqr8IYYTIV8Whs22Wdd1LWNftHGralNGzY+KitHlqDObL2SboUj5Ut7YF31ZUWJfuEOFxYAIsS/0taxX7FI5RyfFfKGiDNut0qv90sA6dJfYIkh55So6Tpx8aRu8vu5U769bziw/1PVPufbHdxz+8Qf7frB51yObP39k02c/3Pz5P23dle08f/rS0LHei60dnY3r3/vpD/7HhvRTc7MzctHS8pB0VIpmpeUOf0QOo1CrDl2N9EE0C5UvlrtcpKAaQ7SQF5RKZmKKUsoXw8pLERXTN9PvNl5xWe7/UWWzWDyKKl8UsdFxly/qTc7i2zT5dk2qFcn7Yo7tJEOAVVOmXI4ms/FC9hmKlC92PVk0+rYrjkq7WYnltlQq4s4jMo/lQhm5QihcCN6XahFh55Hk4awt+eK67vz8/K2JyfO3Rrd39vz+6OkXD3fWf37sH3d88aNtB/5hy65ffvrFyYErbT0Xvujuyx46vKbp3ef/8b63Vy8bHx+jCvdevQUfiz7cgHelhDZX2G6kiMbUFEJYJC40tNTyRV0TJg5ZCJbVht/4x+vquDLJotTyRaoV37dFVMzQ4VTorvoUbcnZJKNQFE0oUr6IUcKLInRXOy8ZTZN6kwi1jVI3b5m9OHS1bDILe2kqvvPIterJBSCbfjZCRG60+IpMyKkg1CXSxmlKhJiVZXiSEDglXgjypVpEkC9uIdqFnQJqZ/EoYH5+fnJysrfvQmv7qY7+y7vO9L3Z4rywp31f98CpgctHzva3dPdt/TTb+Pb63zz7yOb/l56ZIbwvHnyog+EdnMtMxkvUeV/2LggNLjtZCL/+xJ8b7OEpqXzRNIeJ4yHe+Qufym4Rwcgqi9LIF+Ec5X7uKBVTd7g0hLw0kS5FLukVUH2uXYO0lC/SpeK/eCQFZAouePa49aKP4jTtWxe54EJXTBEJq2wFd9QsG8oiXyx6coHwfUDGCil7gfQGCatxdvIl+EhzNblW5DIgUSrkS7WIJl9cLoLf+nYoF7pfnHZdd3Z29vr164ODQ/39/cdPOW1fdp4euOxcGPyyZ6Bp87+t37hpcHBwamqqMnUFoFLEX75UkFJtmazG1ktQYnRuFj4P+xIP+QKKwCBfAubn5+fm5m7cuNF5uvNo29G2Eyf3HjwwPT1d1soBUB2gXuwp1YpJFb71CgAQY2zlC8vMzMzo6CixWRqAeBLGZLkuuUgHAACgpihGvgCw+ODCaeB4AQCA2kYnX2a+/nWkWksVuzMAAACAmgXyJWapYncGAAAAULNAvsQsVezOAAAAAGqWRJPjqlJgMjV5kCqTMBZISEhISLFLZZQvmmN4468dMBYAAADiBeQLwFgAAACIGZWWL0PDQ4NDg4NDg4HJ9P4MktPhnO48jS/brSSQLwAAAOJFFeSL95V0KpM5eHnw6NGjJ0+enJ2dLWPVAAPkCwAAgHhRc/JldHR05PrImdNnOjo6ND/WCEoI5AsAAIB4UX35Mjc7f+32WO/w3bujU/Pz87dHbvf19l3ov7B79+7Ozs65ubkyVhC4rgv5AgAAIG5UX75saGv7P5+//Q9/an3inb6WUxemx2dGro4cO35s957dVGoZdgAAFSFJREFUn2c/v3nzZhkrCFzXhXwBAAAQN6ovX77b9/2LE5d+6kx878Ph5dv/tbP38qWB4bHRidnJ2V25XYODg0TB4Y/gcT8mw/+gTDbp/zJeNqn6hbyedF0imc0mhd+hCc4UryYeCcvQ9EI2Welfuckmo/0oIOQLAKCSOJl6/U+A53OpVC4vf4jfDQcBVZAvd++MfrRjT2Ay/3rrG2933vlWp/ut97uT1/7yl5/+4eaNW81bPu3uOn/owCFavoQWmtMTvpLw/xceUprzQHrwsqTwV0+6LqGkIEkY+SJpKcWv9BkVzwKBfAHlx8nUh4iWhjkoGyFXY4fYUqUM+VxK+JQqR1sxsRxdZlMjLFqkbY7NlfK5lE0BkfGuKJToXSzjhNdVtFs4Wx4X2yqo+zWQL6yOYTuZ1DegpjDITSdDPM6Fm4J7MhV3ShXky/DQ1R0f7Q1M5n96ov2/rW37q/T1++s7/vP73/peeu3tm/c+/nh3y+Hj+/cdUMkXxnMSqhiVfPGFiKwYFDqiWO8LcZS6Ytl/dhjyBZQbJ8NMKE6Gm19Yu5TPpYSpJzDI0rxmeiPnraSiHF3FpHI0mfO5FH8praUlW8S2h1EGIuru4jrE6K+IiNQornvzuVR9KpUiW104Zi1fWA1mgukJrlMCURXKTvhhahj1Yx7CD6LwiHDqVvEEVmfxaG5uLjCZ//HXT//Xa99+qOV3//3Zw//zF+c27ug/tL996PK1+en5w4cOk/KlJ11XsP6W8sV1e3p6dO4RX1IIGZJphf+lLi2XVpdO6+VLT7ouPBHypSjmDh6cHxqqdi2ACDPXiLYsn0tx1jmVy5PWx2iQmIJ05SgrRlXImDk8hb6OpiZCaYoyNN0lFql3V0SHswlCPbw/M1T35nMp4Yi190XhMXGkwkQ9459YkC9OBtqlhrF9PNnDkjoX7nayqOrHvtz3w6Z/v/mv/2zg6/9l/UsvrDs7dnfanXG9pJQv2WTBmWItX0ho7wtj/ckM0kqTafFILEEjXzzvDHMwm0yETU0ks+GClri+xUX9LDL5Mj80NPvOOzP/8i/QLrVJONfIpoyyuqSx15tm0ngXIV80IqAI+aKpiSCTBPVl7i5ZZpXc5RBcXaqG/wEh9byBkhWHVcXIUSabReZE7Eu8sJUv1A3EP4z0LVYl+TIbmsyLF+7+7uPN/7zjtQ8Pnhu9PRVoF3dm9vAh9eIRr1HU8kW/WkOF1WaTiUSiri4oSul9KVQjKD+bTNSls7zioUSU3vsiqKcE42hK8EeYZoUqx11c8mXuxImZlStnvv712XfeqXZdgAL2NV42eJS3Q5rXvA+YN2/qDEvLR1dMW44iM3PAZDWpmjDWlusEQb4oukslKfT1iIhXlZRUcHAtQUYw/o+iYl8IAUIJlaBaGUcMgjDFQ4DawUq+KJ477kFVFFQN+TI9786EJvP29btycmdm3ZkJnXzxCeVLqFsI74svUwQ1Qi339KTr6urq/IWkumRS733JJv0sPem6RDLJiqiwOElImBaPfPkhBOwIooQTLPzRxSFf5j75ZPrRR2e+/vXp73xn/ty5alcHKGDD7VxKHqherST5olvrVsxfuvlRqJj+BCJzqKVszCRVsEX0oba7OIe6X52SOx/oqBwuPogPSJA/jaSrFHpIuHomk/ECbJSdb3TXgapjIV+UATI1GroryJeTbaf51Hmy7ZQ7MzE/M3HogEa+eIqEcruo5YsHoy9EdcHFA7vqvUeFHdkF4cKF7hqDec2xL/51uXOFswSNEgTWyIeM1JR88daJpr/xDb9WK1fO37lT7UoBGmJ/Cm2PTd4XRYQvZ7qpeVCvRqTL0uXod9m4KgtvqIlwkqIMU3cxk3jGKUO8qpOpr09lMmrvixiNQ8XlRHMLsQ2kW+RkUjnHD5NRhrlAvtQ+dotHtPuFWDyS8lRfvmzK7GDSR5sy2zdlts/PTExOTBzQyBffmHv6gNcNEeSLuHqUTSazygUf8TMvMyVWZB1D1V3DkpQvwTqRl6Yfemju4MHqVgmoUXgDiox9oa0/u21HuWuHrAGZnyjH1qdhFWSjX+khW2HXXWHe0lrswL2jXagqXFepOyKvanltdOj2eIKFifJVrh5BvtQ41qG7xBZB8Tmgnovqy5dM0wdMas40bc00bZ2cnJjQyhdOGXjRKuLXvxDyJZsuhLvK39rCLQmRW4vo8BeyhMKptEgxyRdfirCKRD5rMcmXYJ0oTE8+CadLLaPexisaWdLokmpF8r4ow2nU5ej2F9OxsNYxp2WRL3bdFRwpqe9FXptShUo6GXEb0sLki2Jlzz+SYfYaaWsP+VLjRNh5JHkn4yFfnPZup73bae9y2juc9o4vj3e0t3VMTOjlC7/+U9iRw5tsQU3U1dVRu3UKJQkuGcH6Z5OJRDJJfnsv+dV3BeFjKV9UgbdS6O7iki/iOlEhzW7eXOGagIho5yXpi0yo5QEyHIbcRqnbL2z24tDVsskcHilq8Ujj/ealgrq7nIzpiy8WALlTVbuPWrmPNfrikVeWEPAk5oJ8iTsR5Itb8LKxU0DtLx6N3hwdvXlz9ObI3ZsjN2+M3Lg+cuP6iEm+cP4R1g9CfHeuWxAsdel0Utg45LKuDk7scL6cgm6gvv0u9PV4R9j8gluIqRlfSliueAZT2mKSL8I6Ubhg9MMfIko3BojfzSH68tnj1os+itN06oX2edAVUwTJKlvBHTXbZrJFijLEuVjdXeG6SRlWjRShxuRWVtEpJMsXHk1AEr18R3w7T7j/SgHkS40TTb64XAS/uGRIlVN9+eLOTLgzE3PTEzJK+eJpDcJKB1uXeZVi+NkhbkuyG8gX8WMuN7/8lA6jbih5U+kfPYpIJeULsU4UOF1efx0LRkCgVOGqZQh7Bbbo3Cx8HnYxAd4XoKfS8uXqtatX81eHLg0FRmvo0oWhSxdIdu/ePYSvKSs/FZAvqnUiROkCHaX6qpNyfGUKAKCqVFq+TE5Onjt37tSpU4HpOqWmu7t7fHy8jBUEruuWWb6o1onC9ItfwOkCAAAgEpWWLwFV3+0CAhY4FnOffEL6TjTrRIHTBVG6AAAAigDyBSxoLObPnZv+xjemv/GNwIOiXydClC4AAICFA/kCFjQW0z/6kX/6L39pXidionRL3goAAABLB8gXUPxYzKbTNmJFjNI9caIcrQAAALB0KK98WXPMVaXAnmnyIFUmFTcWze8ejKpdzjzxi9f336l6e5GQkJCQFkEqo3wZHHVVKTBpmjxIlUlFjMXw+cEpU3QLm6Yeemjkg0+q3lIkJCQkpEWTIF+WeipiLO795Cl77TL2gx8O9wxVvZlISEhISIspVVS+9F4aGhwaHBwaDE3m0CCbTjnOoeOnL4xMVb1flk6KKl9uvfWuvXa59Yd3qt5AJCQkJKTFlyotX+bn5111uOjg5cEjR4/uPXLy0u3ZqnfNEkmR5MvVwycshcvEt79z9fCJqrcOCQkJCWlRptqSL6OjoyPXR053njl4rOPirZmq985SSBHky+Ady5CX0Wd+MTh4p+pNQ0JCQkJarKnK8mVudv7a7bHe4bt3R6fm5+dvj9zu6+270H9h167dB493Xr4zV/UOWvTJXr6M/uyXlq4X+F2QkJCQkMqaqixfNrS1/Z/P3/6HP7U+8U5fy6kL0+MzI1dHjh0/tnvP7g93fH7m8s2qd9CiT5byZeS9LfYhL/d+8lTV24WEhISEtIhTleXLd/u+f3Hi0k+die99OLx8+7929l6+NDA8NjoxOzn70ae7Tp4fJCrtpO+7P90y6g6OZh9N8DyWLWTLPpqoa3DcwdHso35mqpxEcsO2ZCKR3MB8vuGxxH1reoI/W9bUFf4MynTZo8xFibThscSj2yo6ohseSyRUTaaSjXy5euqcvXaBAwYJCUmT9q+vr6/P7Fdn6NiZWrkzL39Yv96peuWRaidVWr7cvTP60Y49gZH7661vvN1551ud7rfe705e+8tffvqHmzduNW/5tLvr/Od7DtHyJbTQnJ7wlYQnSphDSnPu53QHtyXZDAX50tNwf0JJQbIw8kXSUmJmLgOrkEqbSi9fBu9MfOd/RZUvcMAs6uSsrQ8RLU1rRnlo1B3U2CHmRDlDx86UYPOocrQVE8vRZd6/PjiSau43dAjdIm1zopZAtqXI5BUrXK4/t7LwYcfOVH19ff2qXAd1utcza1uV42KT9q9Xlj/IyBdWx7BdROobpJpKBrnZmiEe58J9zjx9upu/0vJleOjqjo/2BkbuPz3R/t/Wtv1V+vr99R3/+f1vfS+99vbNex9/vLvl8PFPdx1QyRdPWzy6zdconuBQyRdfiMg+kkC+8KlY7wtxVFnstmT5FEzJ5cud377k7SQae+InQbqzuvHWm28H6eoX7WE6da4c7UKqnbR/PTOhtGa4+aU1E9r7/txKYerxbCRlzk1v5PnmVcxZinJ0FZPK0WTu2JnizbNawaha1JoJbTyjDCKWoO7JhSWpUVz3duxM1a9KrSRb3Z9bWZ9aucpevuSbV9XbUhA0jDoJKxaaQ8nyIdVWUj/mYeIH0dMuwU3FqVv1zV9p+TI/Pz83NxeYzP/466f/67VvP9Tyu//+7OH/+YtzG3f0H9rfPnT52vz0/K59h0n50rKmrrAcYylf3EGnp8Wz6xoeywoZHl2Tvo/MeX9aLu2+NWm9fBFSVJFhn8qxeISEpEnMXMOLDN8QhjbJ+/f+9aSp1hqk/lxgTXXlKCtGlGPOHJ4STqxs0tREKE1l49Ul6HqyFCnfvIqTC5ItyaylurdjZ6p+fWZtMd6XfPMqque5oRe1zsqd+eDEgnxx1kK71HCyfTzZcWe1/qg7KD0+qqKqIF9cJvblvh82/fvNf/1nA1//L+tfemHd2bG70+6M6yWlfNmWvC/hBZRYyxcy0d6X7KOBX4TMIK00mRaPCAfPoEJktKypSyTYWJnso4W1J+9CXoZAQoV/MleBfEGqcArnGtnSsy4ENr/Ga6K/hLYc41maNYsi5IumJoLaYP7kdIOyBLueXFAKLiFdy1ckhNRz1tanmvudouQLPcrkIJI5EfsSr2QrX6jni38YRSkfpGrIl9nQZF68cPd3H2/+5x2vfXjw3OjtqUC7uDOzu/apF494jaKWL0H8Cqkhso+S6iSRuO/+oCil96VQjaD87KOJuoZtvOLhtQ5ff3rxiBEf3JqX5+xhdJXvMSo0hM8J+YJUscS6dmWDR3k7pHnNM4fMm7do3Z21lPfYMD8SPme6HEVmLymnTlNN8s2r2MWjoBPs5Yu5JxeYvCWklVIDA0UiyAjG/1FU7Et/bqWY09ND1FisStWvd7j4oXrZMVPK3kAqbbKSL4rnjpMvatdsxeXL9Lw7E5rM29fvysmdmXVnJnTyxU+hfHl0mzJ0N5ApjK9CtdzT03B/3X33+wtJ9z2W1HtfNjxW9+hjdb5T5LFkIJgC9wkTN8MkT3woFYbv/mlZU6fxqWx4TOlxgXxBqlzyFrm5iUY2utSrlSRf6jUGXjF/6eZHoWLacqjMoZayMZNUTbi4YKPjRCzBricXnLxmin0SKhKuxwLVUqx8Ueoh4eqZteu94Btl5xvddUhVTxbyxUPxaFtI1SrLl5Ntp/nUebLtlDszMT8z8fkejXzxFEmWVQxG+eKdywTb9jTcz8kX71AYY6v3vmxLFoQLF7qrD+b1JZReXvjX5c5lVqkKfzKFtKypg3xBqnAi9qfQRtfkfVFE+BYMpNL/oZofFRtn6HL0u2wGpaBCMtGRK2JIh87G28mXEntf9q+vr1+VWav2vng194emNVPopeLlC9cKWk06a1fl9vuhu8owF8iX2k92i0dqZ6SweEQ9oVWWL5syO5j00abM9k2Z7fMzE5MTE1mNfPG/rMXTB7xuiCBfxC9l2fBYcoO086hQgihEvMyUWJF1jJf8lSzz18BAviDVevKdE6JRLzL2hTOHYjlqr4NqyYZWG0Q56szmC2kzyNcy+U6qEPsSxEuqYl+Cf6/KdbA6ZiHyJWhIK63G9q+vX9vK7jwSnFhYPIpNsg7dddZK7w9iIJri5q+yfMk0fcCk5kzT1kzT1snJiQmtfOGUgbAJWS1fNqwphLvK39rCLQl5pam/x4Vxn5AleFWSvw1PFcbLp56G+wuLR3SMcOFPyBekKiX1JmfWyLmDiv0ypK9C8r6I+4zoasj7fRSmVC7H+OVpmgsZMixcvtj15AKSs5bZ1yrso+YVibO2vn7tenIVSc5sldhv+BDvn/W5DouvdYH3pfZThJ1H0jcLxEO+OO3dTnu3097ltHc47R1fHu9ob+uYmNDLFya+xEnfl0g8us03+UweQb7U3Xc/tVunsLdIcMkI3pcNjyUSjyXJb+8NTmTPKuypZsVK9lGl30UVeCuF7kK+INVEkpwlbJK+rUTOqdg4HeRkLas62NbGi8MfksN41ZmV30hhVxON99sudNeuJ4tOknTj3oCpfdRs7y1w8ci7kBDwxCXIl0WQIsiXUfGrFOOxeDR6c3T05s3RmyN3b47cvDFy4/rIjesjJvlSkCac30VQMIx8KYTKNviqgl2UCV0drPjgfTkF3eBLJa4yvnwJfnmAzc9Wjw6j8WoSypQNj/HVY0qDfEGqlRR8J5UiNNWPJqlXrsvQ8xpbbHBUu2JC+jzoiikiYZWt4I6abTPZIrYfmKPW8sWiJ4tLwtfmMl3Nfusu02ox7EaWLzyagCShMwv9LGiRgnzRfeUd5EuNp2jyZbRwBwbfGWO6owarLl/cmQl3ZmJuekJGKV+83zzalkyI8SjB1mV+e/O2pPZnibxForAoX754C0CSDvA9K9zyUzqMHRaXhxRf+FtLCfIFqWaTcdWmwuUgFdn5JrXhmyvr3wSA9wVpsMLypefK1cGhq5cuDAUm89KFC5cuXOjtJ9L27O5TPUNV76BFnyBfkGo0lWrFpCxbjpGQkKqcKipfBm5MfnHq3K6WU4HJ3NVySpUOnujuuzZe9Q5a9AnyBQkJCQkpdqmi8iVIMJm1kzAWSEhISEixS5AvSz1hLJCQkJCQYpcgX5Z6wlggISEhIcUuQb4s9YSxQEJCQkKKXYJ8WeoJY4GEhISEFLtURvmiORaYTKTaSWW8FwAAAICYAPkSs1SxOwMAAACoWSBfYpYqdmcAAAAANYtOvgAAAAAA1CCQLwAAAACIGZAvAAAAAIgZkC8AAAAAiBmQLwAAAACIGZAvAAAAAIgZ/x8LlLB61ZrXpwAAAABJRU5ErkJggg==" alt="" width="529" height="218" />
2)测试模板1结果视图(固定)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAZIAAADtCAIAAAAa42QNAAAgAElEQVR4nO2d628c13nG508yDDso91NQBPkeIA4MBC6SFJ0ALZIaSOsadY24Vuy0SmOu61RKZCuNVal2osQXWRpdIupCiqIoWRIpShTJIbm8LUVyRUnWxUpcJNsPuztzLu+5zG33DPn8IMDmzuWcOZdn3vOec97xvL/4j+uPHz9+/PjD73jedz548ODB/fv37927d/BbnvelH1++c2dzc3Nzc/PS61/yvvTaxUaj0WjMZaDRaDQajeXl5Uae3Nz7g+dfHSAPnXv12df33mg0Go3xA69/9QcfjQ+8/dUffDTeaDQG3v7qs28fazQajcaxnz7/Nwduds5X3QoAkA8TExPqg60+y3bqm3t/8PxXOx25MfC253me950PHz169MG3Pe9bv713797du3c3Nzff/yvPe/q10Y2N9fX1tbW1kR1Pe0+9en51tV6vT2WgXq/X6/X5+fl6nkzsef77PzxGHjrzw2+8umesXq/XD+98dc9YvX5s91ee/+2n9Yk9z3//r9+daJ10eGf8/5++++pXdp7JNXsAAI4rV66oD8Z9tt7qj9GfY7/96298/yvf2O19/vnnDx8+fPDgwb179zY3NxuNxsbGxtra2urqar1eX1lZWV5eXlpaWlxcXFhYWFhYqNVq1zJQq9VqtdrU1FQtTy7v+t7f/eXXVf9+uOsic+4nb/3l994b4a//8PW/+9bey7lmCQCg5MKFC+qDJ14S+myt9uHrrb781oe1Wq1W8x49etTSrNu3b6+vr9fr9eXl5cXFxVqtNj8/Pzc3Nzs7G4bhzMzM9PT09PT01NTUpQy0bK7x8fEsJpvE+Tf/9rv/9AF56PA/fe2lN88xP3zwxpf/dt8Z5sIvf+27XxbOAQAUyeDgoPog02fP7Xvua9/98tfE3u09fPjws88+29zcXF9f3zX4dfzDP/zDP8f/eQ8ePLh79+7Gxka9Xt81+PUmAAC4jXf//v07d+6sr68vLS1BtgAA7uO1vFq3bt1aWFiAbAEA3Me7e/duo9Go1+vz8/OQLQCA+3itEeLKysrc3BxkCwDgPt7m5uba2try8vLs7CxkCwDgPt7o6Ojw8PCZM2dOnDgB2QIAuI934cKFc+fOnT59+vjx45AtAID7eBcuXBgaGjp16tSxY8eSytaBT46dHv10qrb4H7/cf//hI/LPgvINANi2eCMjI4ODgwMDA0ePHrWUrTuP/3gqXHqt+ta+owO73//dT36x938HL776kzd2Hzref+Dga7ve3vX74Vd2vvHa+x+/MzJ+anKyNnm26McAAGwfvPPnzw8ODp48eTIIAhvZ+nOzuXT/0btjM28dODgwMfW7wQvvfHx0IFze+e57/zs6vvv42R+///F/X5l54ee/+tcjZ3aeG9t94vjH+3/UhScBAGwTEsvWF3/6U3j3wf7JhRuNe1O3P5vYuHf51p2R+u2zy40TC2ufzK0enF7eP7mw99r8zuFrO4euvnnoozd/9O0uPAkAYJvgDQ8Pnz179uTJk0eOHLGRrc/++MW1xr0PZpYn1u/c2Lg3duvOxfrtc0sbAwtrwVz9o5nlX99cfPf6/C+uzr5+9uob58b2BJ8QshVWK5Vq2Gw2m4Hv8fhB56TA91onBX77ZImwWvH8IPDZy9grxdTEI/E9NI8c+Prj+RP4npRNI8xTyqUaobwtUTLaDHa5SACISSxbqw8en6/f/n3t1oVa/XxtZXBuaWBm8ejN2sc35g5em9l/deqXlyd3jV5/Y3j8n4Ohn54a/dXRQ6S11emZXG9pK0j7P/EhZTeOJIfvdJ2/wmpF1X1joWNkS93b+U5qVLqMpJKt9uPq8mVVLroHZ24E2QI9I7Fszdx5cGJh7Xz99pXV25fqjZGVjcHFtZPz9SOzKx9OL74/WXt3Ym7P1bB6aeql4yNvj04cOXdKMUiMLKVYvVSypeyRCv1Ia21ZWBxRj3dQtpqmJ9AdVR6z17h0WQYgKYlla3zj3kdh/eranYsrG+cX187WVk/OrQQzSx/dXPjNjfn/uTb7zpWZ/7o09ZOR6y8cHtp38frgxSFZtsJqpdPrLWWr2QzDUGcOtaVEOMGvKvpcpSrfrVKt6mUrrFbiC92ULeN9edM2lQh1LoRKgR6RTLb+3GxeWrtzcHr52sbd4YXVM3MrJ8OlYGrho8n5gxNz+8fDvVemd12c7B+58drQ2D8cOvObyzeuXD1PyFbgd4wna9kioa0tpteTJ0gjStMgUbyDRrZafZo5GPhe/KieH8RqIY7XOK9eQlGIb2MzSIwu4fNJDLMV96j6nl9lfGkAdJNksvXFn/40emvz4PTy1fU7o6u3h5c3ziyun6jdOjxb/2B6+b3JxV9NzO8Zm/3Py+Hr5ydeOnHh+PRCOHWFHiTy2qSWLf2ojHKyBL7neZVKdCutKcH198D3KtVA153jFNTyIKimxxiWHn+EeaxY3ZrprS1GiUwPbrBbFdZUJ4FWsYcQLtATksnWxqM/nFu5fWh2dXT19slwKbhZ+/jG3G8nwvfGpt+9MrXn0uTPLlx/Y3j8tcGr/3J85KXDg0euTU+Mj2gXQMSyFesVYW215UnojNSwLqxWKpVKe8BY8X29tRX47VPCasXzfVY849tJXdM0SGzLjuCQE8SIEyr+aE6yZTAztccUTsB4jqR180TzjwDkQzLZmr5z//TS+ona2vmVxunFWyfm64fDlQ+nln49Wfufibm9Y7O7Ls/0X7z545HrPxz49N9Of3pufmXm5mWFbLWaPmVmqWWrBd87uW7D+fmbJqMj8DuCxbnkjU56s2+rnS53rXCVoE2MKKhki30Y/cSqYbLTwtQirbPohkx1GKcvAcibZLI1emvzWO3WmaX1waWN43Mrh2eWPri58Ovr8/smZvdendn96VR1dPLfz1//18Hxfz428ubgldGF+tSNS7RstTtxSxd4vUggW+IoMfDbYxhqYCf+1jqZEilZv6i8ayhEtozYyhaFxtqS/HVCqYfVChz0oIskk62Ti2uHZutDy41TC+ufTC387sb8+9dm943NvHNlatelyeqF6zuHr+0YHHtp4PI/Hhp8Z2R8bPnW5MQoKVtct2p5o0RnMSFbQbXjxpZXXXFDP3KqkLYjyDt0LlUuW9JqQluCWCWSr+qNbFkVDVdAUWa0lqsw5AWgQBLI1p//3Dw8d+t3MytDK43fL6y31sT/5ubS/hsLv5yY3301fPPyzE8uTv1oZPJfBsdfCIYPTc7XP3s4N0265EXncWusxndVQUUqlQo1+9a5k2CCCb0+8D3P98nV9uSS1U6vtpQtlUNdcsl3RbbCqi9OLEgPSz2TwbfFnwyJAj0jgWw9/L//OzJ/66Owfm6lcXJh7cMbc78en9l/dfq/L0/94tLkWyMTb5y/9u9DYzvOXnnp5MXvHTxxdGJm5fYdhUuee+mzdg89Cd8Sqkq16vOWEnOVsLdFXJ/U6mWUIya27VpH2PMFM5DJGX+X+L7iFczdipettth2xrfyLdSqRZ+vSQiyBXpGAtmqffZo/+TiW1fDd67N752Y3zMW7r4ys+vyzM8uT7/56VT/xZvVS1P9l6Z+Ojr54+GJfzxy7vLy2uM/fkG75FsaQ/TOaAkCr06GbsItLWhGsiX+zJ3NDzOrsVeNkrVydFJelOhhIDU9GFmu1ilBtkAvSSBbjc//cGX97tBKY7h+e3ilcWyqdnJ2+XRt9XStfqpWP1Wrn66tnqmtnq6tDsytfHJjbmnz3ud/+IPSJQ8AAKlIvLmnxRdf/PH6xJXxsfPXTP/Onf5g/+4XCn0GAMC2IqVsPf784YlD77zd//dv/ujb+n/7d78wfu69Qp8BALCtSClbAADQKyBbAICSAdkCAJQMyBYAoGRAtgAAJQOyBQAoGZAtAEDJgGwBAEqGt7a2try8PDc3d+PGDcgWAMB9IFsAgJIB2QIAlAzIFgCgZEC2AAAlA7IFACgZkC0AQMlIKVs232kJfK+vX/zCl/RTNwj7+4R0w/4+T5WVsL8v+jpHfx8R17iLjxD293GpMXmzoV3eCa8qGF0jsPqAY08eRShDvmWYWoRbFbAFSG9tBb6+uuLWGauGssWG/X2dD1BIStH+PEV6sWA/oWzuCmwTI5qb+AiF5lyULeIBtDePMhvnkso5eXcx3XRPYf0hWeXnhAzdvf0UivcoczTP/PtB3DK4BiG2Aeb1p3gOof3IZ8V5z9iWthKe9/SOIZNskTYHTVSsTG3GbU8hW6w1pKg82WCyhWn5KtVsnyLpjt9vsrbEnBO3T5lzsb+0JZC9lbkZsw8c9vexxcpnq/XokkLyJ+TQZQLf833f6+tTdGPavJVEg3gKUrd4TciUf8La8gPptop3nlK2LFo+W8s51UL5sZKtDuKQpQ3xsVO2fJUvXPL7gYrKs/kSNAWrSL6vly3NI6rvzudcdfu0QwRe/L2+vr52wbX6t3Ysqy10mzLnlSDDU/CJtJ/JKLoWCbKnELrFPVfK/BNly4+7uURk2aLqhi5TC9nKXgtbhESyRZsrREkyr2ruRaO6XrBf1G+mpDXGSGbHXDH15ngAoFEDasyrfhWmdm10MtzXH/JGo9RDaZQizOVcKSB8XaR+CsGUY9LmxDeJ+qrKn8ugUCHZHExCUYr6xPhDiGbFXMxeaNXyhdqBm6zZTCpbNs6eqO76+kPxKCVbguqpZSv1myZK1TQjwFj+ylGtYP+QA5a8ct5R/06GeBWLu6/pgfT50eSbP5TiKVpP4PvJhn6WSYknCU1Heq4U+VcoafvVxvgQiNEg3YwYBbNr+eJLBfZWM7FsSR1Z7hit1tIfzWEJRS52EMo7oGrOqSYiGZ9O4Ku7UDTw4n4j7TNppqGYnIf9fX2+38f41GnfDZn1dj7pdGU10sgW/8HYVJ4Vg0eafioVGrmVxmvqV04iiBJSPJJZtqiZKuNji+q77f1biWVLcluJlRf4bc8FUbYK2dK8MsXLM7wu/f72G7JluLSNQWKBgKW1ReVc1Z6S5zzyjCRrosa3ivyrtbWV+kVvGP1xt2RNdfJGukEr03iop0rbfvhrdLJBDxLpgaFly5c0E+ZWGtlqdkoy0E1rMH5XNYRk5C1brKM28L0UsqV89xUrW1HOWJ+Qqc/LfYrsY0LOLX1b2WTLytqy8W5pfW1RjsnKKEh2FZ6n+P/ZSoBs5UEq2ZK8rDKJrC3JVFbLVgbzuJVSoGiCVN+JxrpkHqica2Qr7fCKcmUzKZo8jaLzvSPTorvEssOkHiRaCFGUDaWNKVlbqgkiWijzGeTq3LWkbHGPE0+tWLb83GphK5FukOgxppTFVJX2V3uXfIpJFMFCabm3VdZWx83t+wpfqvCCtXfJp57+yS5bbLOPzpde2LLrjJkMzuMpkvi29DLH6YdCm5gazD//RtniV/vxy26E8WIKl3zqp9hKJJCtTmOSPfCEetnLlt00cFNvzZjptBGNbLEJyW7udtK0wR/lnOxi6XOeZpAoHewoENNNqIoQ8k+KSXde83bWlqaRUdnPVguybEUlLVWQaMgq5wGtWr5wh+7VgstYyZbOrOLPITyPwkmKdmZ+f2R7y0S2ecgvFqeamjYlcdBVbM4tra1YrDReQe5w2jmC5PmnbSat/lpaW8meIjcrJcEgLT41riGliFkBW6vZbKb2beWLzRvEzRH91s45S9mfouz5b+HmU3QfRwLX6BzxTe3Sol6zZXPOUvanKHv+Wzj8FN3GEdkCAABbIFsAgJIhytZ9AABwG1G27gEAgNuIsuW9eBP/8A//8M/pf7Js9XrcCgAAOiBbAICSAdkCAJQMyNaWIPA9r1INlcEctlq6W48ylmTv8gzZ2gKE1Uqr2bT+p1Lt0krqXqW79ShjSfYyzwllKxC+W8cGHCgg34FfigrsLWG14sU7qhUFFlYrqd6Gmk3aVuk6TlitOmDXOFqSLTlSVL8pz0plECUkFUlkS0gwrFbE0Jd5GYrxMztTh5ZEr6CuEfjtQgqrFbm0mKaXPFNMg4xbqV26ztMpGFqNHarBPNAKkDJTbOcTtUmbZ5MyZFcua9kSkyJe37m/KkrYIbrd6MOq3y6hwNekKjQky1tX2Ork/7RM123IUnG0Bi3vQR5kKs62j0ayxP4SB27V5dlKGTIql51sEYkQoYLkN3JGSihbjpJCtqSmJsjYFiCNmDuJzpmS6iGJi6zvY6sMWZTLQrbo2xMvJchW/tAhTROP+ZK3XaIynXK85EFXZCunGjSkkLNsEfe07owJlCG1cplkK8GN2bzFg+lKNYz/imdLK9Ugdi60a5YaIyfrJpIDufOD6BQkWo54relSseHxj6wqH1W6XDHlLw7J2y7RF/J9LelqwVQazLVadx4Vmpm5bcCXijpFq1xxD6SKDJ2IdmJRSuLflCRqDyZpWPwTyIPGpM+hjrubopS0spXklrJHnhtUcKPvtnCFnDITBZPG2hKHMsJImz8s27Ot/h31cu4EPjuKd5wiz9zZYjUGvlfx/ei6AkZjjsmWthYMpcHnQqxBbTkTR2lhI0rfIlex5yfH+hO7BaUfWk2hq97OBjQG+7Z8Av31KZRLJ1vWka5V9RT9Loy942JmyjQn2RKqSXBWSomIP4TVilep0A5O0YNAOkLJPMslyf0iSkT+g2O3ZEtfC9rSEJsaf7K+nKVmSpeKUrY0dSQ8USbbREq3CNkyE10n2XgJb2K8MHlE/TwGibolQS0VEI8XKlvcnUyqJVWqtpxt1nhQeabqhf2N0k5hlKt/KxpxSrYMtaApDUMPNZSzdG1C2dJInka2MtZgj2SLSDZ53dssFixgkGh3Y/2SPUoHCpatuKkK9hG3fIUe8BsrOb4HfZpCtrRrW/RdIg9ccsmbakFXGvq3t76c5Wvzk60E2pqQ3sgW0edT3Me4mLcwl7zF7XWZC/xKNdSMCYqRrbZuyWJvbk/2lZPAt5XB2soJpxZAGGqhKGurUNnixTjHyuuJbJHXJBdjvWyl1qxmhuWmNkRr0ZQ2dEGy1bHMbd4YYWhuyfzTaLOn8m2lHhblQtq2y2QrP0ezoRa0pUEb7+r5LtFU49KlnSppZMtmOJQOIV2yFnjXYFXvBkmTaur76BLIcrMMm3tatN4ytNkhTA+xntOCZUs5Fpf7os0LOLqleTypmUnkXCHi3FmxskWahsqqI67KbxaxczdlLRhKQ6hZoby15Sw66CuV/KwtwYVVTFEFfqVCyBaTF3maKGVjElpMCgeBunll1Kxm5q3UisxFddg6Oa7SSjX+CnlrnUH71/hH/oLUzUBdNKw5L1SM0uUlXkecYDjMJyB2Q/LZ82j6siOJ6/F62co9N4qMkbWgKQ3FtdItVN+m71wozJGpa9CYK2mZeorZMRVMtvxojaPs/ZCLw9gi7RNO8zCK5pVds5oIXANAZij7LMNIARiBbAGQFXkIledkIpCAbAGQA8KIDJpVKJAtAEDJgGwBAEoGZAsAUDIyLYAQV7blhxsxvhOQy7QuAMCGlMtNs+wKN6BY4O4+UC4AukOGzT3FzfHmsEpcG127MKBcAHSBDFupnZatnn2qDMoFQNFkCFzjsGzlFGIlfepQLgCKI0OYwLZs8RsOOdgleKpN2NRRbmsoGbtbuXGVCMqm21tosTdQWv1ss0sLygVAcWSIJR/4HruFXowRwFk8UgAB7VExVIkcjMS0N11pCepz1Uk6ygC3I5aPW2DaLAvlAqAgMsSSl/RCiHxHxMa0O8qHs6G2+IuxFyT3u0K2DOm2k1bEktdEO6TIMQYAAIAl+yAxhrFG9HEmTdE+27KldHGpgmlp8ialofhNHQzPEOpPOhmSBUBB5OqSj3+hZCPu5fqjHZOnIn3ITjxf7WNSypY2XflPKj1jCCNoFgCFkucCiFytLSaqpjmQnaVvy9LaojXHcuIUmgVA0eS53FTwXmmGVIYBlz56uE1Mdz4GdLQHyTzQU8uWOQ49NAuArpAhlnzgc4Mk0eqxj+ptMnkE4RITIvVEFV1bnyv9kjFDHHpoFgDdIcNW6qBaDYVA1/LZmlVOlrHVJSeWXYhsMrq2Xbqa2yqjmEOzAOgaCFwDACgZkC0AQMmAbAEASgZkCwBQMiBbAICSAdkCAJSMLsqWA3HosUwBgC2A5z29Y98rT3me5z3xYoGy5UwceigXAGXH8zzP++a+Yq0tx+LQQ7kAKDWe5z23r9BBopNx6KFcAJQXz3t6x1BxsuVwHHooFwAlpUjZcjQOvVUGAQDOUphsORqHPlk2AQAOUpRsuRqHPmE+AQDu0dtBYkzX4tBbZhAA4CwFLzd1Mw69NmsAAMcpfpW8k3HooVkAlJeubO5xJw69IjsAgBLRrT2JjsShh2YBUH56tJW6R3HooVkAbAEQuAYAUDIgWwCAkgHZAgCUDMgWAKBkQLYKJAyjhWj5BbwIqxXFtIL03VvDF3ALIKxW0iaWNChI4Kt22KecdVEXbDr4z6GDPIFs5U8QVLk50qhDKnYcSd/DZqdDFVpEdTDVhiZpL3phZEmpVQr2yhX4cjF0SsBCgeQNq5k0j0oAk9aFURLZcmDlgiELjPb4vrRIjV+iZvss0oZzPRrZ6o611VpCl7K/JimY9vm6lcSt+tDdT7QMrSO1SWmRN++9qeVApymKMsiWM8VvmxHhPEE2rINOJI1O0eNBIrsBK0V6SYfSBtlSnSGnKWzCt05d/xIrV4stG87LlmMFb5UdWbak0Uxo7J6aHZWaK3pmbUlbFxLWWsv2qSg/ukQmKElz0nTZorGXLVMqLphaEY51oHxwW7acLHIqUxpDR4leSjq9shSDxFhiIzMjqeoGvudVfN++v5O2VPyo7KDdrglZypa5TaYyNovEyW6UCYdly+HCNvu5uMPJnyTwWy6ythbYfVOy2EGi+iHEII6ce8k25Y5fzDqnXKQjGU2BK/TJRrYsajLvCcl8cLgzpcFV2dIE6mr3BXWkeK4Z83uuvVYcrvaB9olyLAqL17SuHRCyFadhNcvFz0BaGgIaa6tjAgWBEFE2KdL9BaNH+DOMC9uc90o1TNDnac8VV/T844rniRVvLGSrri8NEEvRYsuGk7KlL+DA9yq+H417+NGIMAXPH4zbKjPZzTZ/+fRU7YDbNB4E3CjNOMPFDrjY9klPK7IWVqXCWFtxGxfJcwWZ9CSEmIj72Uk6ZW2vW0rZ4j8zoExUGsXqZcuy05O+ePdbbNko+INjqTAUvth/OdeN2Bi5tkiaL0wjkHqCfi5Kmc/A93zfZ7pq1FyMk4PCgEu2BzQZ4vz8xbZQ5fgv6aJR5n5R0A7tDQxazFeswXPOG2OibAUBv4gljakVX+x2iy0bLspWs6ntdWLNaFwVwkve0AjkKte8gBUZjFLlDrbbqcXLUDPg6vymsiBaSTMNuhcNNJ1ssQVjGKsRskauekg3ESshrL/TF6lq2YPTLbaUuCpbTa17S9cI+Cm4BO8uhUdbYVPwWYttAD+gch60PrCm60f0RfIFSpOLF8UyyZYg59p7mGSrXbO6e2h8ellc8uplDy622HLjsGw1FYWtawSSuyWJyW3Z5egWwM6BEWfoDS36qCo/9HSbbKpZtuhcSSFbsl2ks5RMsiXNAsRD54Adt9P5yLAAQrPC1M0WW2bclq2mjRHCVCjdA2wbAdVuxXWhVi1APCnwPdnYilY1KL3QiSSg7fZln7UU1hYtUYFyp49RtoRrLRePNDMuN9VOJbjfYssGI1s/f8ZF2WpSzVL57uKdn+0Xrx+0G6/JwSk2IrGL2LYA5jzmZcq/Vy1WUieQgOh5IrutHLKlNkJVTjx6YMQUa8Wr+D7z9SbrBaxZNvfo15u532LLRiRbAy8+4TkqW01hKo5tqeLf/IqAamexTMch3jqxc06lGkoDB/F6OQu2uSVm25i+aLGw0loC+A5Hzwp0iSSyZThXO7sh3McPmlwXjhyACdavJpKtJtcgdFsQS9Fiy0ZHtgZefsJzWLZKAdt+/GqV3l7HnGTh/7X0XMinKby1heuZ5RQ7teRLdRrfIWkdIuYpEqt38rnH6EKHtiBuDyBbeWMnNmrnTbI72bxRla/jArCwbhLKg3HXOT/MSp9WUmsL9I5okLj3GcgWAKAMxC75oy8+AdkCALiP8wsgthVaj1QCP006Z6wwcDVsJUoMXEAgL5zcSr1t0blXTJv15DtRK1h1q5j0s+fcFr0UuBLwE2wBSiJb3ZrLtV+cmOy2ltlPLluajSpKuEU/9OEE20bsHrJrplaPaxB0hTLIVleaTLujFjbTZvUQ+VlbaWinEBlqScrdcG43TC0nahB0Bedlq5DGog4wUqQymB/F5NsqttvEstUqBeulmqYHK8DUcrUGQVdwW7aKaiaKDllwo28aH8hgbRm0weDOVz+aZqQZLcvWxVMwrj/Lv1RdrUHQFRyWrcIaiHJ9YvGNvlncY+kkL9GDSUHs9IJnehiT3KZha9YgsMZV2dI3Dc48kHbjiS5nLqKMzgZpN/rYbpG6ALd/J2Av5H7s/K3oQvTDSeaSHxAmlLJXFiBb/HSkNJVo6a5TBvzccjUIuoWTsmWYk9LE3pZ7KNVjVb044IP5EbcWOhSfy5ZwyMEYEj+iIZs0BtmijikHh+w+XoVEWHZcyhe/fWoQFISLsqXfjis2RTlUZJZGzyXMDZfkXBGne5WKnffZZstxctnSCU+SPmZeaWq3ZZo2tbZPDYKCcFG2ms2kW4Tza/TauEhijoTfrPft2r2oFeaTamGSHL0m/ivJ+gObTd7RmfrzjMlu8RoEReGqbDU1TYP3O+T7rtY1etJPIjR6c2MmHosej1VaX5gyDNaEHHXCJcR5CRURdKiMqUnh49Ese9hyNQi6i8Oy1SQbiOSR6F6jt3lXm2PRJAn/5AeJ1mkGcRRCIeuWVg95mmGdq+ruypxvmxoEheG2bDWlZiKb8fpGT5r93DnMoEvX6ImeIjZyU6NP1OKj5KyFS/I3CxNl1G0C5gLCRhYAAAeMSURBVCvHGmvLMHCi3y4a1doWNQiKw3nZagqNhV+yEwqxt4VWHvjkZ76Y1smNZLSNXuz7shJoG32yFs/d3MY1b+yAgRQiWjxFlUOrXUXCxboVptujBkGRlEG2mnyTEYN1hlHsbem4H31RXmhwkWVBrQjiV+4olvcof6bMk0QtngrewAz/6NIROzbRAU2+9kyyxV9vsBC3eg2CoimJbG0PAu02Gno9g2AyKHpls9m0cVIpSdRlEVgLFAxkq+eQqwB0Z3OjMTIKVqo1RVmtLQC6BWQLAFAyIFsAgJIB2QK5eaPg1ALdAbK1HdAugFfMnaVJBZNtoCuURLacn3+2X4lO+971R/Vwm6iLLCbtQ7pvajnfiIAtZZCt/Jtbq6PnfFNdNvklluJEn/6oMVXWThL+zBFDLeRuanW9jkB5cF62CmlohXSJpjKz8v4UVpr0R80pygsj838yUy0UEi2+q3UEyoTbslXCJkZlmd5F0vlJf1QPsRjeLooBhepLiOZaKCJafIGUsFkBDodlq7SNS8w4tRk4Hszpj1qkJW9MJrfJRG736DefCvpMxEgw1UIR0eKLprSNCzSb7sqWZrjlibE7+c2x7G98XCfmBpqJM2bWjTiFOWodKqBI2RK3Kxq2XQvblFOEdqDu6Yu6Wb46AqXCSdnSN6igFS+cDZAgWzeGiOCKDSv86Ey8kBcYkw+J21lMBF+IftIftYLcNExhCOSiegB92sRZ5asjUCZclC1DYyO7gBShSR8RnOwS2g8mEL1c3+1FrzsXjKVaZe6tP2oi6vqMlaOEj1NlnX9d6soP85SsjkCJcFG2mk3te1BuiURoXUOnJ7uEsYkbgsxps88HYxGd7vqjGsRc6aPTiBHmMw8SVcseyllHoCy4KltNdbOy6hLmwRIZek7dJWTntdL7YtEf9M6rRB55YmylSl54QrNs0Skw91OZS1uhjoC7OCxbTUXjMi5VStklEr/J7bNMJG/ofXaqRT6pMqPEAEuaC6A+C6R+f+iW15a9joDDuC1bTaqJSW0zaUTwpqXfpJUY65+SLJtQPFuRsLwOXu2gSTiNaBHXNL4vd4AyiRTmE23VqQu5jHUEyoPzstWUGho/40+vXErVJSTPkHCW0GXEe+j6A5NJ3gFvPmqYV5R90vS5hPc5gWzJj6dfYVrGOgLloQyy1eSbW6u3xXP+QqfVuzUk9wdlrKidIsqjFs5r3WIizVHzcgjzVmp6xoyc7tPNBXBrOrSPW846AmWhJLLFYunAAC00k/yUC9uqaI1bEFFHoEggW1uYBAspcgZ1BIqkZLLF2AfoFo6COgJFUzLZAgAAh2TL/fCYAAAXcEe2EIkcAGBFF2VLO/8smFrkau1cCKtVzeIqKCcA7tMt2TJIAr/QuSBnbnvFECKZAFBuuiJbJjEQvVrFTZ9bLM6GcgHgOMXLllkGpH0iPZWtJpQLALcpWLYsBIDYkttr2WpCuQBwmCJlyzKGi7zsoS1b5Ja2zlXpvpXKyJYxYjmUCwA3KUy2coxELu5R4eIJSBtYtEc5a0sRYiD5QwAAuklRspU5ErkUapj9ngR/Z/ujrGzZfNsPscYBcBDvac976pWh3gwSrSORM1GUKCWJf9MfjWTLysUFUwsAN/E8z/OeemWgBy75JJHI418od32sQvqjnQ/GVCrVwCBc0CwAnMV7bseOp7xv7u3+AogkkchztbaYOKJwxgNQQrwdIwe+6XnP7u3yctNkkcgF75XmozCGT8ZIf5AfWYBmAeAy3sja2r5vek++PNDVzT0Wkcj1X4yIbyYaWNqjpq/1QbMAcB9vbW1t6JWnvCdfPtrFrdSmSOTVaih88VS+l2bdluJo/HPrxziFaIQJzQLAfby1tbXloVee9J588Wi3AtcgsBYAIAOtdVv7nvW8Z36O6KYAgBLQXm6691nPe+YZyBYAwH06q+T3Put5HmQLAOA+HdkaePmJPGQLbisAQNHkuycR8eABAIWTULacjwfvJlhaAUCOJJGtksSDdxMoFwB5YS1bpYoHb75FL1xwUC4AcsFOtkoYD16LTaytQoByAZAdC9kqbTx4FVIUwq4C5QIgIybZKmU8eHZPoidurBYQs6VIV9zP2PlbjlShfCLuNCgXAKnRylYp48Hzv5CWldIS1Oeqk3SUASneMx+1AsoFQCHoZKuc8eDF34j8KWTLkG6zExxV9byS5aUZiSJKPQCpyTxIdC8efOCbVkjQimJKtylaVPpbalxwMLUAyEJGl7yr8eDFUFqmvNmkK/9Jpad1nLWTgWYBkIVsCyAcjgfPXGjp27K0tiyNS2V2oFkAZCTLclMn48FLSkp8xJVLIN6DZB7oqWWLOhKGUrLQLACyk2Fzj5vx4MWESD1hl1D41rnSLxkT8iGqJTQLgLxIv5XazXjwspeJ1NboNtQAUp+u5rZs2tAsAIoibeAaBNYCAPSIfONtAQBA4UC2AAAlA7IFACgZnvfcAcgWAKBEeM8daFtbR198ArIFAHAf70D8wTHIFgCgBLR8W0MvP+k98eJRyBYAwH28tbW15aFXnvS8Z34O3xYAoAREsvXki0chWwCAEvD/f7MNluYnlpoAAAAASUVORK5CYII=" alt="" width="402" height="207" />
3)测试模板2结果视图(动态)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAa4AAAD8CAIAAACgpteFAAAgAElEQVR4nO2dW5Pd1JXH9X0mVUPx1voOU5WpClW8zotepqbmZUK5QqiZTCCZwECLIWMnBCchccLFAwGDZez4hq/Yxtd2t9stn+52u9v3OEAgXFKgeZCOtC9r7b2lI+lI6v+vXAV9JG3ty9p/rX337ty5s7a2tvXIdxIAANiseLdu3VpdXYUUAgA2M97Gxsby8jKkEACwmfHW19dHoxGkEACwmfFu3Lhx7do1SCEAYDPjHT58eN++fZBCAMBmxjt06NDevXshhQCAzYx38ODB9957r6wU/u6d9w6d+nBx5fp//3LHJ59+Rv7ZUIwBAKB2vAMHDuzZs8dRCh98/uXBeO2p8IXf7Dmw7dU3nvn59t8fOf2fzzy3bdfe2d/tfGrrL7b+8fh/PP3cU6++/dLJiwcXFlYW3m86AQAAMDne/v37oyhykcJvkmTtk89evrD0wu92HphbfOPIBy+9vedAfOPpl1/5/amL2/a+/+NX3/7VuaXHfvbrH+w+/PSxC9v27X17x5MtpAEAACakhBR+9fXX8Z//smNhdf7eR4v3P567+9HZWw9Obtx//8a9fau33xnd3Hn1xo6F1e2Xlp8+funpo+ef3/XW80/+UwtpAACACfH279+/e/duFyn8+MuvLt376M2lG3N3Hszf/ejCrQenN+4fW7t7YPV2NNp4a+nGa1euv3x5+efnr/3o/fPPHbvwYvQOIYVx6PthnCRJEgWeTBCNb4oCL70pCrKbNeLQ94IoCsTHxCfVt6lXijAMSY4C8/X6iQJPi6YVIZV6ruawwRI5Y4xgy1kCQBuUkMKbf/n8xMb9P67c+mBl48TK+pHR2oGl63uurLw9P9p5aWnH+cVfnl3Yeuryc8cvfi86+uzBU7/es4v0Cse1XaqBmSpl/ykusdKQy5hckcd/xaHPSUIhnoIU8gpC3VBarJypJIVZck0S5ZQv3JdJCQhSCAZICSlcevCXfau3T2zcP3fz/pmNeyfX7x65fnv/8sbua+t/uHr91YWVl+dGL56PwzOLj+89+YtTc7uPHWQayLlHVygiJ4VsLWc8uqpeocUzki5HQXNqWFEKE1sKTFfZa+662dy3AYB2KCGFF+9+9Fa8cf72g9Prd09cv/3+ys39o/Voae2tK6uvzy//9tK1l84t/e+ZxWdOXn7s3aO/OX35yOmjuhTGoT8WMEcpTJI4jk1uW+bCKDcEIVOP/VAPzQ/DMo3ECQRrWiFrLnglYRs/COUDg8NVCr9JkjO3H+y8euPS3T8fX715eLS+P16LFlffWljeOTfacTHefu7q1tMLsyfnnzp64d92HX797Py58ycIKYyCsZPnLIUktFcoKAl5g9aatjWQ2VaiHsFUJ4QHosArkuoFUaFAaltV6iUtKTRFMC4N5PwROZ5EFwMTRhh4QSj0TQIwDFyl8Kuvvz516087r944f+fBqZv3j9+4e/j6nX0rt969tvHm1RuvLFz/9dzyixeu/c/Z+Ecn5h7f98Heq6vx4jm6gSzrHS+FeSUn6zjVaZU2Xf08KKPLI2lIFHh+GJkkQo4/fUVRYk9wgD35ipCsQjGT6l6hoG62hFv8a8brG78gzfYYYggGhqsU3v3si2Pr93ddu3nq5v398Vp0ZeXt+dH/zcWvXLj68rnFF88s/PSDy88dv/jUkfPf33vy8XeP7L50de7iSeNkmkIKCw0kvMJM8pQKTjVp49D3fT9rLPtBYPYKoyC7JQ59LwhEQS6CoyXBPBqbqzjr60niJ1+tSQot7rDxGtOpWoxjpYGXGncGoOu4SuHVB58cWruzb+X2ifV7h67f2re88W68/ofFtdcWVn47N9p+4drWs0uzp6/8+OTlfz/w4X8d+vDY8vrSlbOMFKbViXIHeSlMkWu8VBWlsZjE5hxFwVgEpWET80BKFqRZAaiblDk/it4JQsNJoZgY84C6ZYqQg0tIepF5gEJxWIetAegPrlJ46taf3lu5dXjtzpG1u3tH6+8urb15ZfW1y8u/mbu2/fzStg8Xw1MLPzlx+QdHLn7vvZPPHzl3anVjcf4MLYWZMKRaI2tQCSlUW8hRkLXfNKkgfktvpoRP18TizZ5LzW9ECq24SiGFwSvU+j+VXOf7CgDoF65SuP/67V3XNo7euHdw9c47i6tvzC+/eunaby4svXRuceuZhfCDy08fv/TDIxceP3D2u7uOvHTy4oUbtxbmTpFSKFVVZWIKL4VROB5q0GcFSs1ecoiY9nfIEMaPqjO33RygTNZEdUs6IoVOWSNlUB4Zo4ftnDcAdBgnKfzmm+Td0a03ltaPrt/74+qddG3J61fWdsyv/nJuedv5+PmzS8+cXnzy5ML3j1x8LDq+a2F54+NPR1fJYRO1gz9tp8rVX1Em3/f1Olm0bxVXUVGSKPC8ICBXrZDTtMdKobhCXGXnBj20YZNWpDAOA3XwR0sslQRLX6F8M2QPDBAnKfz0b3/bvXzrrXjj2Pq9/au3/zA/eu3i0o7zV391dvHnZxZeODn33IlLPzl64Yfvn3t8/+l/2blvz9zS+v0HzLCJ5JyI/hk9oWM8TBEGskcnPKWsO1Pnz6U1l+rYKnzQ9Ip4vxg92ilKLxbhqjOvhdCal8JMwMdtez0IXgnp+w0vghSCAeIkhSsff7Zj4foL5+OXLi1vn1t+8UK87dzS1rNLPz179fkPF2dPXwnPLM6eWXz21MKPj899d/exszduf/7lV/SwSapbRI3Pp7PIimepetI0lSSXQvVn6W65iR0WvZSUVPaj4stCRzeBmUEg1QO2ACkEw8RJCu/99Ytzd/58dP3e8Y37x9fvvbe4sv/ajUMrNw+tbBxc2Ti4snFo5ebhlZuHVm4eGK2/Mz9a+9NHf/3iC3bYBAAAOkaJhXcpX3315eW5cxcvnLhk+3fs0Js7tj3WaOwBAKAWSkvh53/9dN+ul34x+6/PP/lP5n87tj128dgrjcYeAABqobQUAgDA8IAUAgAApBAAACCFAACQQAoBACCBFAIAQAIpBACABFIIAABJknij0Wh+fh5SCADYzEAKAQAAUggAAJBCAABIIIUAAJBACgEAIIEUAgBAUkEKXc43iwJvZlY9bVP7qQ3i2RnlvfHsjMdFJZ6dyU+gmp0h9sRvMQnx7Iz0NiFuLmT5XfKphjEZgdMBzVNJipKHsmXYLKJbBQAMVPEKo8BsAoXFF0rE1oJ4dmZ8yJKmPtkRTNUFKD+Iw1DRhEOWBbMlTFhNQqMxV6WQSIAx8DyyRSypmJOhq++tlgrnw+fZY/gsEpKlgvk2C1frjH8QFZYhGYRqA8InlUmHYj/6XUXcJ7Ql4IJFCknfiCYvKsFCCntmpFD02hiD0B07V4TaxClxdoumZcGszStUY04EXzHmah3MZFUMyl41xATHszNitsrRSpOuqa58Qw3VMAq8IAi8mRlGGmg3XBMiIhWkFso6M1H8Ca8wiLRgme8oK4UOli+Wck2lAHgcvUK1uZZBnA8slhnrGJDnAzMGYTyF2ICockFglkJDEvnQ5ZhzwVdtHskfFG9mZibLuFQzjO14Y6a75LmsLhOkQn5JliarkDu8ULyF0EIpXRXjT+St3OcgvUSXQqps6Dx1kMLJSwFYcG0gk24VUTqCSyF9ELnnFT+L/4KWtQJBhsdulU0hisaPQWGo9j7/ya7cVTSO8MxsLDu3Wq2nYYVdijkrSnJZVE6F4nIK75YEvYyic/kvRVApkMk67JSsVDVP6AsizEp4WHzQyfKV0kG3Y7M49xU6dJ7l9jAzG6tXKSlUlJSXwspfxPyttlEbodXDtugVP41srNUV8/EXZRwhWRkLSbAlyBwfQ7zlSxVSkaYgCMo1ex1fpd6kmI6WrgrxZ9Q5+1wK/SdES5g2I0EV3Sxf/VDBL2yUEsMmijjolS21wNl87FIpRrXSUb0tXBWpNAAt9JFFAV8t80an9BvpR2qjQc3EPJ6dmQmCGWHcg+4LI6OexZN+r65wBimUD5mv1FNlGTWgU8VhkHCtrcp/xkpB5BCTJLsUUqOJ1mSrio7+wsYoM4KsdgOqBhEFWU8QUV6MFBo+7erjE3zWg9nsS546WJnTSkw2cfQKqZhzNlo+5nlPUzmzt36p9F+dvcLKDoml5SsFKTYpyIBMDXbBeKhUVbUf+RmTFNENZLpR7Gj5mg7DLWySkpNp0tKJTMNZQt84DyFDdUuh2JkeBV4FKWS/0c1KYR4zsY/NpiN6PSXrrRJzx77CyaTQySt06S009l3mMSYLoyEpZ3ryiv8XCwFS2G1KzytUesJ1SnmFWjOBl8IJmgbpmyLGrKn6mLfzyThQMTdIYdWmJTXcILzR1nOrDpCMpV/tfnKshJUbyA7ilkeD9YU1r5AbxKPFt54Gvqn7m5RCKTnF8Jej5ddWCsCFsg1kT3D5HIYojb+6D5tUGDxTPKl0CILzCsdDEUHA9HcrjoD7sEnlYb/JpVCsSvn9mmOhd0UKkwDqSEWZvkKzdEqaxOidUIL1x98qhfJsVHkKl9JWrjBsUjkVwAUnKRwbqD5KQiiiuxS6TSlIzF6XnbHdGaRQfJE+FJG9mm7s5DEnq231mFdpIGsXx6omVD2qIJT4kwLVjjvi5hUajIyK/mSloEthntNaAakONzv+62T5SgjtlcLmxCKFJvdPvofoHVZuYmzX/p2b7GuYt0tiedEFZb7GN6kNzmZj7ugVFgJo6GWVLlcdxykff9q3M2q6o1dYLhW1eVMlGqjFrUUJscLoBHzChpnyzjQuX7pu9pAMO+YifU9F3+Of0s1UDImpb9JlGixJjFPfps1gYy7S91T0Pf4pHU7FcJi6FAIAwPSBFAIAgCCFnwAAwGalkMKPAABgs1JIobflCv7hH/7h3yb9J0rhtFvrAAAwHSCFAAAAKQQAAEhh74kCz/PDmN1kZmjvHR59zMk+xtkGpLDXxKGfmmL6P37Y0oqEab13ePQxJ/sYZzvOUhgp59KKG6E0kBdRMJAMbpI49L1iVwYmw+LQr/TVNmz04PTejhOHYQd8mY7mZCpxTPHb4swqgyohHcNNCpVExKGvbnFcVyKLfOyMXTiSfypbIwqyTIpDX88twZzLR0ow8sLy3d7becYZQyt8h0qwDoyixkZKrHyq3hnjbFOGLquhgxSq0SfcjNo/aT2sZG1XpDgMshyKAsNbFeN0DNoXi1P+0/G93YbMlY6WoGMY5EWh4FzraC514i/FBt2mODspQ2fV0CaFRMSJrdZ0z2FCeiiFHaWCFGrmq0jjAKjygegkpo6kSokkHnIOx1UZuqmGRimko0x8PCGF9UNvXV26vVu+PhCF2amOrDpoRQprKkHLG2qWQiJM58pYQhk6qIa8FJaIrJjeonPCD+Pir2Lk3Q+jorMmsxaqz6Fc1dM6+cc/qB23hDWqz9oeVY1ZTjKXP9x7pWyqX3DK1weiftX7qTOVgi03hGeN3aPUtv5CsJGcK/wbnWIlJYg7VaAU2cvyN6l/UzJrvFjGsOQU6A3msung91fvlBoyUlgmmvqoidSgknozMjGMpS8IkdlVvEK1Gaf0XMiXdV8+1YxcOaQb5Ogw32ImztLdqmlEgecHQf5cAy3RjkmhsRQsuSHHQi1BYz4TV2mxJHLfIVZFT1qN5adWC0qTjDpFF72br2o9KMIxBebnO6WGtBQ6n7zAlX3+u9KXURSdUE41SaFS9EqHsvYS9Yc49D3fpzuh1R4ZsrOajLOek9IvquzU3zHQLSk0l4IxN1RTk28257NmpnSusFJoKCMlRRP5UNp7m5BCO/lzmi9aMhDrg+VPeGmQiRrIpilrqbKo1xuVQikkmxJqhmIsO5f5QlScqbIWf6P0WGnhm7/eVjolhZZSMOSGpdZb8ll7tqQUGmTUIIUTluCUpJB4bfmyd5nM2imXMKk0bFJgnqZKaUvDUliYv+LHSdOr6A4Uq+EUYdC3MVJonHtlrmZ10KVhE1spmHLD7GWY81l/tj4pLKHXJZmOFBJ1vkI41gnsXdPBpNJkmgJTgqPAD2NDe6gZKcy0UP8o2W3UvcBL9BVO4BXWRKcm01hKoSmvsFEplAW+xsKbihSSz5QXeLMUdlAHk0pTrF3I51+y7YeGpHDcKnH5ssWxvXbIqTFGj+srrNwkrIWq9UGIVn2DAZZSMOYG3cjgxzlVl1J6L91JVUUKXZqC1VDeS5aC3NUamruAqry1cjimF3RQB5OKC+9S0q8h7R4pw4Ji73bDUsj2bej128VRyIO0t6UNI8hS15I6ZtqsFJIuLFt0xFP1jR6PQ2NLwZIbSskq+W3MZ3UQxffr8wqVLsFmsioKfJ+QQiEu+lBeRWNSLKZC5whvXp3VwWSC7RiYBOd2kd5cmIkfxvlf6ZyV7NfiR/mByqbFZ7fYlFEKm+1CVJ8jbrBcll+gVm0y7XWYi94xJ6mIWQprjw0TMbIUDLnBPKsFQUU6v+qHsTI2ypegNVbaco8aR0WFaAX5HFy950fPDqtFur+4SmIY8+qyDibYpAuACaD8yAlaNGCKQAoBqI7efKxzEBm0CKQQgIlQWqPQwZ4CKQQAAEghAABACgEAIJloMk1dVDhlYignn3R8egEAm4eyU6zHfcRSDRZmCZZ6ORmYCXmaoinI6pOiTJjmW8XMzk8WoIYAdIFqZ5tQEzor+mkVF4aRb1OWI9S0iYDwVnnqLTXRuoqsQQ0BmDoVtmPQ6nwUmPw0C7VJIbVArM4FovWviROAGgIwXSqdbRIGyvaj5PpIN+qSQmaprLpEvTqNSmECNQRgqlTYujUOw1BoK8ahH4h/j380dNcVV7VTJrI3m7v6CCl02jSAiVXh1YoR45coqy4w+RSboIg/+wJqCMC0qHC2SRyGUdFvFod+qmfS9jPFX5pG6VfV9fZySPQmM9SOB/btBdhYRfYzRqxeIdODqW4WZY0l1BCA9qlwtkkchlFxRxRkG32Mq7j+rLJBUont0ZkVnRWk0BwrahuumqSQ3bDRNZ4AgBao1kCO8jqdzvATBM6yb7MmBZadikkBKi+FNewm3YIUwiUEYFpUGzaJxu5dlA7RylJo2GBSbyGq7UcCl22QLH2F5lg1KYU2rRejCB0EYFpUmkwTpi1jLz/SztkrNEuh6wZHlOgwbmG25fv0vEK3fTChgwBMl0pTrMNiQ19d4SY5ZYKSG/kEkvFt9BbGuq8YOMWqQSl0mNoIHQRg6lQ422QshYL+mcZ9y50yYTuBxPArcfaFOmWGjVWTXqH57AvoIABdoOx2DOKy4cznoqbVVT5lIjGeX2E9+aTS2Re28ytsJ0UYrxvPvoAOAtARsElXo+DsCwD6AaSwWXD2BQC9AFLYODj7AoDuAykEAABIYffJ29jKCHlTz0qjRunAjvBTqE+Dp1YDqfcwNOsiF3OpALABKew4+YYVFTbIneTZJEkKHTRoKLnMR3xEHCWSRowa7zTNptcD4EIrUog5IyJlznIphIZeTSNOD+LXImrPOhaIoxSS0aoqhaYU0fFjI9ZvlxCVpmU8z/O8h7Y0KIVUkfbuBBLnt9omYZdLbq4W3Ga1xY/aMQvGZ91q2iRSWKV9bElRqQQQLmHvrA5q2CYNe4VUYSrdVvadBkvR2AkkLi92CLnEZtjiskFynrqeNMH/Mj2bh8AviSah944kVqm7nKOgbTBuTpFj1MdPqi5hT60OatgaTUoh6w/q38zairvpbfcnprYIWnZgdA6EeiL7WfIKmVvd0mPx8PK3OqXILg/qEp9eWx3UsB0ak0Jug6+en0AyMUIE+WakY0eecmO1cQjGcU/VL92SUpJCItbKbh2uw8dqE9kpRQ7CoIlc760OatgCzUghV3SWXQWFm/RKFnXlBBJDhJmQxRuIs1xqovqIrFZc6Q+ZpOhSKN7spAIVpUJLkZMkaI3jQVgd1LBpGpBCQ6HZe2ikO1QbjrpyAkmZkPUUNdVVOUnfl1xo45axqH2MFJpCdPYHnVLkPOxNTO0ZhNVBDRulfik09VjZjNLSW6Q+zuxmXcEoo3InkLiHrBl4M20pbf+b8gEogwpBOHauCsemlBQaEuqSB8YdfUxv1afQDMXqKvQFA3fabSBbjJIqa/E31Vbq21WwMSkkR0Vr6SuUgpyshlANZLaTrowUGrAVUrVWIjlcPgirg0vYNO0Om1h6bShbEK2sOaOUn6vW62af++cUwRreWgp2vhMjX417heYUmV7PzKruv9VBB1ug5ck0zAe6JyeQmJmCFDaig8zPBq+QHIqt5hW6pIhvczCB9tvqoIPt0PYUa8oq+3ECiRW2r1CdH1KXZet1pMyaPlMdq0sKy3qFzikiImEqwv5aHXSwNZpfg6wWpjJ7TLEirfteHctr6vustAkr2J9hBFkYJVTOcqkOMVJSZvDEWMem4xWWS5ESD0vae2l10ME2mcp2DGItMS9gVcxV/FH9W6t6xJeevV5xvNIhZCmqPnWWSzXo7jzHKNvqmKWvUM9Z2uVx8QqLAw3Lp0hIhsMuND2zOuhgy2CTroTt5atxjWrPMHmFJsmyzSVkmDije7kLDayuW0AKk4TqS6o2iDwUaCncxBnSCLC6TgEpzFBaMrBI0AKwuu4AKQQAAEhh98nbUcooaNPPArCZgBR2nHwDh7j8+SSTPAvA5gJnm7ROnWebjG+istfwLAoEAIX2p1gniT7bqt56aVrN1OguWbaQxxFzfn0+osiuZOEz0Pws1BAACZxtUueL2zzbxBziZGebALDpwNkmLVN/BCcJEWoIQArONmmZ+vcrnDDJUEMAEpxtIke6eG3Un7NNJld/qCEAONtEf44K1wHDzjRyijonhQnUEGx6cLbJOOTenm1SlxRCC8FmBmebUCHXJ4VaSJ3rK0zgEgKAs03I56ptEDKFDf3rCBE6CECCs02kB6t5ZaaQuy6F0EEAUnC2yfjXiSWh9bNNuFe4Ah0EIMcbjUbzP3sEZ5v07mwT6QXl2/PQQQBEvNHowJaHPJxt0rezTaj3OscYOgiAgjc68MRDXsNS2HVwygQAmx1IYZLglAkANj3eaLT9kU0vhQlOmQBgc+ONRqM9Wx6CFAIANjPY0B8Mll4ejwymBKQQDBXjhrcAyHReCjHvowEGkqnGZMAlbIKBWA5Ft6VQyHh9Et0ki+S6QDbbUNkGoq1RG9amqU0iyucxsRuZehSLOjG0rgSML8NyGnt7b3PORIelUM9ybd5z3af7tu1JUNsX1rejtw3WpokVQGVzmdmYUZ6jVH31tK06qgUJy6mVQaphV6WQzGx6u4Yav4O1BuZAHIahullPewadmI5d0ISjlpwRpbByfbI/6LR4CJYzCcNTw05KoWm7Q+1CmWOFra9teT5hHIaR+tpWDTohM1uTwor7epMvM51I6haCw4kQpv2NhPtgOZMwMDXsnhRazgMwfgalfi4iFOG6ekS6CrU9NhEytzI6r/BScPq66TBSd3GUE8WkKAq88UEp2QWi/0h62tyvpisfvZ2OuoKaWFFtPOklk0JTJTLF2anyUW1VWI70c2OW02c6JoXmrNU2qtGqoLzjjX7Mk7jfl60nS3kxe+JKMtaOXEGkwBVdkVyWsV8ihl8YtDFFmUnHUreRmAD9dmeblqMch756oJaqBvS2Z5wUhoFW89gkytrhUu3IKTSwnHYsp890Swot2a59glWDVv/m7Zts0jAGrcdK/SUOfc/3uY5z0VhklyVvogm2Kxs0m6IirvIRAXm9UNNiXlWt1UERLfGTSKHnZXXf4fQDpWuxokuYwHLaspw+0y0pTJIyDWSuq7qoyVK7wN6ZQ99Ed7l7ygfbYi3B2HAlqxd6q/IgqB4fIkUWg9aTYhiu5RvITNonkkI2ZHucrR4IN6saltOO5fSZ7klhwmewpcdH720JNHOxvZfv35LQ2y5OjQi1Ckod95m7ISbKkCKzQTNz6RjPxTBsQmTcxA3kmA7ZLc6mysfPaIHltGM5faaTUpgw2WzyxbV+GNnImv+2G60iDVlzRuQxzDQJQShoBZ+i0t92Ll5EvNUXaWModUghoU+OG6PxX0rjWAwsR41r/ZbTZ7oqhQmV2QaD1j/e5h6fNDhTC634xtqbDPa5wulXWh9clKdzFD3a1hRZDJqKURyr6WcirWmB2llm6mkrfrb6SUrILnHmo05MoZHuh+Voca3fcvpMh6Uw0bLc9G2Xq1Xm5gdRYZeRdqaKqfEit7XkF+vRsBs0rRjazDbxLnOKbJ3f6gvV9JobmlojjtOGKPD9ylKouS+WOKtBybZh8mVgOe1YTp/pthQmRcaLfRi8LyN2baR/azXP0PlRdLGQY4TU+8WfDeEmekcW1UWfyFWaT9H4telYbHa9+NGWXpM1FymS6oYYsBBukM9LIy7KwchP0W9yKSMyGYbGMSynJcvpOZ2XwqFQ39IGoDHoXWhgOe0AKWyWcWMDe+eBcsByWgZS2Cxq2xIAN2A5LQMpBAAASCEAFIPufgQEkEIAdNBDt+novBQOePR+qtS5uZ0wxmkvLvvcllYwRhQuYUNMzeoc6LYUUklU560NUyjJTnNhJtjkQU8WiBIjZSK82+RtZeqyHKISqjqXLv+bmLVoNw5L1SFcQlhdj63OjQ5LIZU4pfaoa8IGRRz61DzfcunlN62qLd+IBROcXaq3quUnrT6xLEWRk6Ytu+Xrhq3S6FkGq+u11TnSVSlk/UHlV+PK036T2qC2PqGcMTHr0Ro2yoSxS7O66SvMlIVq0p+S66bVPX7LBlt10feAgdX12+oc6aQU8vulUKlv+USH1ojDMJDrvses92Vh/ZfmjTJxkx1lsZe+7wGzeY25N49ZvOxQUTSRg9UNzuoYuieFpsaViyUT3TmR8TwHoRejWBeqPCz8Nv5b91/YbiRluanu15NXs0PNhM6wICT9JipYbYUrubtMkV3kBgN8isQHI8OOAka7lGsGWb7aj1kNMA7wsjtB2KuIprCwuqFZHUvHpNCQCHsPjVctVMsAAAm/SURBVHSHbMPFHkZCA0Coitm3T7pf6zs2nUEhbNGkb9nO70tluhqHobDxfRz6aflzDUpy8xXuO6x861WHzJCT5FWT5RFFSvbOk+VLKFFRlO4vdK0cusLC6gZjdTa6JYVkxgrXyu3DJPwSWTYmIo1Q7TxmzqDQCl7+Qe97kjdxYq/m5ztm1cAPYylWlvdyP5HpleqGMSf1dizbVOFCEx+UkkPElfjV/D6yDpjsSgyYPioPVjckq2PplhQmibHD22SUVNqL3xyM0lzhqI6s/CXmRyNqzojD1XTeVDQ+LnPctHCOMn0T/bv4qDkn9SBNRmn7OMvhOnqFQcD2OTGdhC5RoRvdsLoBWh1N96QwYZJi6bWhsr/IrlqMku/C1CFC43pAuKvFUbd+GKW9+YJRur23olEaclKvnRN1YBfW7tpXGGSVkwra8kbTZWYcBlY3RKsj6aQUJmSCmA909jGv+/ushMd/hLhyZ9NluF3rtRn/5qfjmubvc4nIVf8+uxol21DVmlfj+9xGkAUfkoik/BOx0x/f5mDqD6yu91bnSFelMCGSRRVo8TE3fmJLG6Wa07xRUleEsyC0OqZ0kPBXxVO/CYuwvHccvtjFHQrvNfS8mJ0V7b2EETMWKXcOjp+V+sJZoUxvKDw3qvNI0xVXtyE2zBOE1fXc6lzpsBQmeuKULg6ie6T4U/rLwSg9+fYSXRNKrbQO3imR5K6OjVJpn/icGlD9ZEJ4UgvQaJTGnFT+jkNfGgRNzBapB6xVfcn6aZeQCEtLPN/NpkfRfC4KrK7vVudGt6Uw0ZMo9lboBhwJE5uUKud5Hn+eQxSIP0khi0EybzXFSutd0YyBvDq+kPbVBGEs3ivbpSleQvRFp0DOIvVvQ05SoWZxSMO3W6QYMBVlshDydKr5Ix7doeHYb+iwCw2srudW50DnpbAdynW9gAExxV1oYHVdAlKYJAmMEkwDWF2XgBSK7j4ME7QErK5rQAoBACDxTlwaHToDKQQTgW2fQd+BFILJwUkgoPd0XgprGSdvmC6f2FAPxqj0wiUcfhmByei2FEqTv7Re5vFPtm5ncbaU9uNkfdbS7KYJoaLJ1TRmIl3p3TicsFT3wiVEGYH+0mEpJJaUanPviVWmJNqSr9Smy1WPjp3YoC090hZvJDV4bLaKrrwAZQR6SlelkDKuSauZPq29XPXo2IkN9AJ2bR3uJHFzWTtiXSq2mcsI9IdOSqFhNX/laja8ExsoKVQyhI2zCw6VW9/GAGUEekr3pJA3KEM1E/qDyLWNQzyxQVuvHsqR4uJsyyvyZSREaxRlBDXsKR2TQstIpdHjiAwnRQzxxAYlkmTT0BJnMq+cKzQ1hQZlBDXsKd2SQtK8c+zVTB+AzPcZGt6JDS6bl7jGWYqJuRSKJ6gBCpSRW+6BztEtKUySig3k7EGlGhQPDPHEhkm9QmOCrb4NM6saZQQZ7Cne612TwqTqsIm9mqU1aygnNhj7CkvGmXqzqVqzc3RQRqCneM92UAqTSpNpdJMuxGKIJza4tMTcpZDremMqPfdilBHoKd63t3ZSChPCuHSrlOqkqSUzxBMbSkuhIc6lXB19Co0cDsoI9BDvW48d6KgUJpqJKWN7eveWp4wqCON+wzuxwUUKDXFm84p6kRwnk3eGMgL9xPP+/okdnZXChFZDUz9RMa6qzH8Y1IkN5llwljib8ooPpWhPuugvygj0DO9b3sP//GaHpdAdp84kkCTJBHk14ZpmlBHoKt63Pe8fnocUbjKmlVcoI9BVvGe/43n/+EjfpVBoOKGqWZhWXqGMQJfxTmx91PO8vkshAABMgndi9xN/N20p7MU2yACAAdOFhXc4GQMAMGVakULjjIO+u4SYTgHAAGheCi1SQbiE6nLTepVGCl1bI2bZgYkGaghA32lYCm0iobuEwrKr8Z81jjequz4Ry8CqSS/UEIBe06QU2uWBOhmD8NRqExnLVnOTATUEoL80JoUOwqCJHKWECb37VDUalcIEaghAb2lGCp0kQWscM0qoPkWuvo3y09GopavSClNyni/5lJKk4rXKrgKlkw4A6BgNSKGjGOjjJfZ+QWUnE19VQz8I8t1KiO2i7F4htduJ8hwVrhZLqCEA/aJ+KXTZO4qeQmOTQj1k6Rf1cULWKkqhsnLWtpDWLQcAAB3CG41G8/OtN5DJWdUWKTTvNmzdk475KVFvmFAK4RIC0EeakcLELAnMrGpLXyGlQKYzKuqTQtumx2IUoYMA9JHGpDDhhYFdaMe4hdn90/MKzfOyhbhABwHoKU1KYVL6ZAxKCwsX0nwGRYNS6DC1EToIQK9pWAqTkidjqItNypxB0aRXqEzGwSk/AAyM5qUwKXkyhuX8CuYMCtv5FdoxuoR/yV7X5Ftpl0MHAeg7rUhhTi93oWFOVsNOzAAMiHalsJ/oPZg4ogOAgQEpdEJpP0MHARgYkMJe4nnetKMAwKCoTQp72Q3YWyCFANSLNxqN9mx5aGIpxPkkrQIpBKBevNH2Rz3PQQqndT5JHIbl99cfRl+eIcshhQDUi/fEw95DW/ZYpND1fJLx6IJ08/jHsvpEBmaimEvIvWowp6ZACgGoF+9hz3vkZ8a+wnLnk8Shr+2VVX3Mtcq208YVIwM5NQVSCEC9eA97D2/Zw0th6fNJtDpf7C9dgdqkcGCnpkAKAagXoxRWO58kDJQNVX3ftu+zKfhapHBop6ZACgGoF+9Rj+krrHY+SRKHYSi0FePQD8S/xz8auuvEY0YiXWGkQ0boOJG7Vw/q1BRIIQD14m1/1PO8R1QprHw+SRKHYVT0m8Whn+pZIQPG80mIq+LlWAuJiCUhhYM7NQVSCEC9eKPRgS0PeYoUVj+fJJ38kj8fBX4Yi1XcfD6JJgaywmhLf8m1wBWksHenpkAKAagXfrVJtfNJsnmAWZ1Oh1QEgbPsRK1JgWUnfVKAykth/05NgRQCUC/GhXcVzifJpDBVvygdU5Gl0HA+id5CVNuPBC4baA3u1BRIIQD1YluDXPp8kmx1SBR4nu+no8vOXqFZCl23xqJEZ2inpkAKAagXh+0Yyp1PMl4oJ0xoVvoKDY1cTVAkkaLkJo6pk0joza8HdGoKpBCAenHbmabE+SRjKRT0zzTuqzpkyiCK70sKo7iNrLxQ0RvUqSmQQgDqxXmTLqfzScRlw5nPRU2rY84nUa9mg89yf6Dh5BN9ih+5EJib5NenU1MghQDUS/n9CrExYW1UPzUFUghAvWAX62lS+dQUSCEA9QIpnDLVTk2BFAJQL5BCAACAFAIAAKQQAAASSCEAACSQQgAASCCFAACQQAoBACCBFAIAQJIk/w+RnPahtUzMZwAAAABJRU5ErkJggg==" alt="" width="430" height="238" />
参考来源:
http://www.cnblogs.com/jhxk/articles/1872930.html
.net中创建xml文件的两种方法的更多相关文章
-
[转].net创建XML文件的两种方法
原文发布时间为:2009-08-26 -- 来源于本人的百度文章 [由搬家工具导入] 方法一:按照XML的结构一步一步的构建XML文档. 通过.Net FrameWork SDK中的命名空间&q ...
-
java中调用dll文件的两种方法
一中是用JNA方法,另外是用JNative方法,两种都是转载来的, JNA地址:http://blog.csdn.net/shendl/article/details/3589676 JNativ ...
-
node服务器中打开html文件的两种方法
方法1:利用 Express 托管静态文件,详情查看这里 方法2:使用fs模块提供的readFile方法打开文件,让其以text/html的形式输出. 代码: var express = requir ...
-
[转载]C#读写txt文件的两种方法介绍
C#读写txt文件的两种方法介绍 by 大龙哥 1.添加命名空间 System.IO; System.Text; 2.文件的读取 (1).使用FileStream类进行文件的读取,并将它转换成char ...
-
MySQL命令执行sql文件的两种方法
MySQL命令执行sql文件的两种方法 摘要:和其他数据库一样,MySQL也提供了命令执行sql脚本文件,方便地进行数据库.表以及数据等各种操作.下面笔者讲解MySQL执行sql文件命令的两种方法,希 ...
-
C#读写txt文件的两种方法介绍
C#读写txt文件的两种方法介绍 1.添加命名空间 System.IO; System.Text; 2.文件的读取 (1).使用FileStream类进行文件的读取,并将它转换成char数组,然后输出 ...
-
在Delphi中使用C++对象(两种方法,但都要改造C++提供的DLL)
Delphi是市场上最好的RAD工具,但是现在C++占据着主导地位,有时针对一个问题很难找到Delphi或Pascal的解决方案.可是却可能找到了一个相关的C++类.本文描述几种在Delphi代码中使 ...
-
合并BIN文件的两种方法(转)
源:http://blog.chinaunix.net/uid-20745340-id-1878803.html 合并BIN文件的两种方法 在单片机的开发过程中,经常需要将两个单独的BIN文件合并成一 ...
-
C#读写txt文件的两种方法介绍[转]
C#读写txt文件的两种方法介绍 1.添加命名空间 System.IO; System.Text; 2.文件的读取 (1).使用FileStream类进行文件的读取,并将它转换成char数组,然后输出 ...
随机推荐
-
如何把car中的模块导入adams/view中
在你的adams安装目录下的acar文件夹下找到acar.cfg文件,将里面的 MDI_ACAR_PLUS_AVIEW 后面的no改成yes,在car中的tool下面就可以找到进入view环境的命令了 ...
-
Real Adaboost总结
Real Adaboost分类器是对经典Adaboost分类器的扩展和提升,经典Adaboost分类器的每个弱分类器仅输出{1,0}或{+1,-1},分类能力较弱,Real Adaboost的每个弱分 ...
-
Malloc碎碎念
(以前为给同学分享写的点东西,很基础.)现在的比赛中堆溢出非常常见,对于glibc下malloc的理解也要深入一些. malloc_chunk的对齐属性 在glibc中,malloc_chunk以 2 ...
-
尝试启动 ADB 服务器时出错 解决方法
启动CMD→ adb kill-server → adb start-server;
-
python中的多进程
具体参考这个博客地址:http://www.cnblogs.com/lxmhhy/p/6052167.html
-
转:LNMP虚拟主机PHP沙盒绕过/命令执行(php exec命令被禁之后)
LNMP虚拟主机PHP沙盒绕过/命令执行 lnmp更新1.2版本,很多东西都升级了,很棒.不过还是发现一个BUG. LNMP是一款linux下nginx.php.mysql一键安装包. 下载:http ...
-
Linux cp命令
cp命令(copy),用来对一个或多个文件,目录进行拷贝 1.语法 cp [选项] [参数] 2.命令选项 -b 当文件存在时,覆盖前,为其创建一个备份-d 当复制软连接时,把目标文件或目录也建立为软 ...
-
VS2012 QT5.2.0 无法解析的外部符号
背景:在新建QT工程时,可能没有选择一些库,虽然在头文件中引用了,但是程序依然无法识别 现象:一般出现"LNK2019"错误. 解决:以网络为例,在VS2012中加入网络库,分为两 ...
-
JAVA card 应用开发(一) 创建第一个APPLET
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/freudlv/article/details/26499817 本文讲述在Eclipse环境下.怎样 ...
-
Faster RCNN论文解析
Faster R-CNN由一个推荐区域的全卷积网络和Fast R-CNN组成, Fast R-CNN使用推荐区域.整个网络的结构如下: 1.1 区域推荐网络 输入是一张图片(任意大小), 输出是目标推 ...