Netty之旅三:Netty服务端启动源码分析,一梭子带走!

时间:2022-05-20 09:03:59

Netty服务端启动流程源码分析

Netty之旅三:Netty服务端启动源码分析,一梭子带走!

前记

哈喽,自从上篇《Netty之旅二:口口相传的高性能Netty到底是什么?》后,迟迟两周才开启今天的Netty源码系列。源码分析的第一篇文章,下一篇我会分享客户端的启动过程源码分析。通过源码的阅读,我们将会知道,Netty 服务端启动的调用链是非常长的,同时肯定也会发现一些新的问题,随着我们源码阅读的不断深入,相信这些问题我们也会一一攻破。

废话不多说,直接上号!

Netty之旅三:Netty服务端启动源码分析,一梭子带走!

一、从EchoServer示例入手

Netty之旅三:Netty服务端启动源码分析,一梭子带走!

示例从哪里来?任何开源框架都会有自己的示例代码,Netty源码也不例外,如模块netty-example中就包括了最常见的EchoServer示例,下面通过这个示例进入服务端启动流程篇章。

public final class EchoServer {

    static final boolean SSL = System.getProperty("ssl") != null;
static final int PORT = Integer.parseInt(System.getProperty("port", "8007")); public static void main(String[] args) throws Exception {
// Configure SSL.
final SslContext sslCtx;
if (SSL) {
SelfSignedCertificate ssc = new SelfSignedCertificate();
sslCtx = SslContextBuilder.forServer(ssc.certificate(), ssc.privateKey()).build();
} else {
sslCtx = null;
} // 1. 声明Main-Sub Reactor模式线程池:EventLoopGroup
// Configure the server.
EventLoopGroup bossGroup = new NioEventLoopGroup(1);
EventLoopGroup workerGroup = new NioEventLoopGroup();
// 创建 EchoServerHandler 对象
final EchoServerHandler serverHandler = new EchoServerHandler();
try {
// 2. 声明服务端启动引导器,并设置相关属性
ServerBootstrap b = new ServerBootstrap();
b.group(bossGroup, workerGroup)
.channel(NioServerSocketChannel.class)
.option(ChannelOption.SO_BACKLOG, 100)
.handler(new LoggingHandler(LogLevel.INFO))
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
public void initChannel(SocketChannel ch) throws Exception {
ChannelPipeline p = ch.pipeline();
if (sslCtx != null) {
p.addLast(sslCtx.newHandler(ch.alloc()));
}
//p.addLast(new LoggingHandler(LogLevel.INFO));
p.addLast(serverHandler);
}
}); // 3. 绑定端口即启动服务端,并同步等待
// Start the server.
ChannelFuture f = b.bind(PORT).sync(); // 4. 监听服务端关闭,并阻塞等待
// Wait until the server socket is closed.
f.channel().closeFuture().sync();
} finally {
// 5. 优雅地关闭两个EventLoopGroup线程池
// Shut down all event loops to terminate all threads.
bossGroup.shutdownGracefully();
workerGroup.shutdownGracefully();
}
}
}
  1. [代码行18、19]声明Main-Sub Reactor模式线程池:EventLoopGroup

创建两个 EventLoopGroup 对象。其中,bossGroup用于服务端接受客户端的连接,workerGroup用于进行客户端的 SocketChannel 的数据读写。

(关于EventLoopGroup不是本文重点所以在后续文章中进行分析)

  1. [代码行23-39]声明服务端启动引导器,并设置相关属性

AbstractBootstrap是一个帮助类,通过方法链(method chaining)的方式,提供了一个简单易用的方式来配置启动一个Channelio.netty.bootstrap.ServerBootstrap ,实现 AbstractBootstrap 抽象类,用于 Server 的启动器实现类。io.netty.bootstrap.Bootstrap ,实现 AbstractBootstrap 抽象类,用于 Client 的启动器实现类。如下类图所示:

![AbstractBootstrap类继承.png](//p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/d877706356d4427a9afd4b13d7177142~tplv-k3u1fbpfcp-zoom-1.image)

(EchoServer示例代码中,我们看到 ServerBootstrap groupchanneloptionchildHandler 等属性链式设置都放到关于AbstractBootstrap体系代码中详细介绍。)

  1. [代码行43]绑定端口即启动服务端,并同步等待

先调用 #bind(int port) 方法,绑定端口,后调用 ChannelFuture#sync() 方法,阻塞等待成功。对于bind操作就是本文要详细介绍的"服务端启动流程"。

  1. [代码行47]监听服务端关闭,并阻塞等待

先调用 #closeFuture() 方法,监听服务器关闭,后调用 ChannelFuture#sync() 方法,阻塞等待成功。 注意,此处不是关闭服务器,而是channel的监听关闭。

  1. [代码行51、52]优雅地关闭两个EventLoopGroup线程池

finally代码块中执行说明服务端将最终关闭,所以调用 EventLoopGroup#shutdownGracefully() 方法,分别关闭两个EventLoopGroup对象,终止所有线程。

二、服务启动过程

在服务启动过程的源码分析之前,这里回顾一下我们在通过JDK NIO编程在服务端启动初始的代码:

 serverSocketChannel = ServerSocketChannel.open();
serverSocketChannel.configureBlocking(false);
serverSocketChannel.socket().bind(new InetSocketAddress(port), 1024);
selector = Selector.open();
serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);

这5行代码标示一个最为熟悉的过程:

  • 打开serverSocketChannel
  • 配置非阻塞模式
  • channelsocket绑定监听端口
  • 创建Selector
  • serverSocketChannel注册到 selector

后面等分析完Netty的启动过程后,会对这些步骤有一个新的认识。在EchoServer示例中,进入 #bind(int port) 方法,AbstractBootstrap#bind()其实有多个方法,方便不同地址参数的传递,实际调用的方法是AbstractBootstrap#doBind(final SocketAddress localAddress) 方法,代码如下:

private ChannelFuture doBind(final SocketAddress localAddress) {
final ChannelFuture regFuture = initAndRegister();
final Channel channel = regFuture.channel();
if (regFuture.cause() != null) {
return regFuture;
} if (regFuture.isDone()) {
// At this point we know that the registration was complete and successful.
ChannelPromise promise = channel.newPromise();
doBind0(regFuture, channel, localAddress, promise);
return promise;
} else {
// Registration future is almost always fulfilled already, but just in case it's not.
final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);
regFuture.addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
Throwable cause = future.cause();
if (cause != null) {
// Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an
// IllegalStateException once we try to access the EventLoop of the Channel.
promise.setFailure(cause);
} else {
// Registration was successful, so set the correct executor to use.
// See https://github.com/netty/netty/issues/2586
promise.registered(); doBind0(regFuture, channel, localAddress, promise);
}
}
});
return promise;
}
}
  • [代码行2] :调用 #initAndRegister() 方法,初始化并注册一个 Channel 对象。因为注册是异步的过程,所以返回一个 ChannelFuture 对象。详细解析,见 「initAndRegister()」。
  • [代码行4-6]]:若发生异常,直接进行返回。
  • [代码行9-34]:因为注册是异步的过程,有可能已完成,有可能未完成。所以实现代码分成了【第 10 至 14 行】和【第 15 至 36 行】分别处理已完成和未完成的情况。
    • 核心在[第 11 、29行],调用 #doBind0(final ChannelFuture regFuture, final Channel channel, final SocketAddress localAddress, final ChannelPromise promise) 方法,绑定 Channel 的端口,并注册 Channel 到 SelectionKey 中。
    • 如果异步注册对应的 ChanelFuture 未完成,则调用 ChannelFuture#addListener(ChannelFutureListener) 方法,添加监听器,在注册完成后,进行回调执行 #doBind0(...) 方法的逻辑。

通过doBind方法可以知道服务端启动流程大致如下几个步骤:

Netty之旅三:Netty服务端启动源码分析,一梭子带走!

1. 创建Channel

Netty之旅三:Netty服务端启动源码分析,一梭子带走!

#doBind(final SocketAddress localAddress)进入到initAndRegister():

 final ChannelFuture initAndRegister() {
Channel channel = null;
try {
channel = channelFactory.newChannel();
init(channel);
} catch (Throwable t) {
if (channel != null) {
// channel can be null if newChannel crashed (eg SocketException("too many open files"))
channel.unsafe().closeForcibly();
// as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor
return new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE).setFailure(t);
}
// as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor
return new DefaultChannelPromise(new FailedChannel(), GlobalEventExecutor.INSTANCE).setFailure(t);
} ChannelFuture regFuture = config().group().register(channel);
if (regFuture.cause() != null) {
if (channel.isRegistered()) {
channel.close();
} else {
channel.unsafe().closeForcibly();
}
} return regFuture;
}

[代码行4]调用 ChannelFactory#newChannel() 方法,创建Channel对象。 ChannelFactory类继承如下:

Netty之旅三:Netty服务端启动源码分析,一梭子带走!

可以在ChannelFactory注释看到@deprecated Use {@link io.netty.channel.ChannelFactory} instead.,这里只是包名的调整,对于继承结构不变。netty默认使用ReflectiveChannelFactory,我们可以看到重载方法:

@Override
public T newChannel() {
try {
return constructor.newInstance();
} catch (Throwable t) {
throw new ChannelException("Unable to create Channel from class " + constructor.getDeclaringClass(), t);
}
}

很明显,正如其名是通过反射机制构造Channel对象实例的。constructor是在其构造方法初始化的:this.constructor = clazz.getConstructor();这个clazz按理说应该是我们要创建的Channel的Class对象。那Class对象是什么呢?我们接着看channelFactory是怎么初始化的。

首先在AbstractBootstrap找到如下代码:

@Deprecated
public B channelFactory(ChannelFactory<? extends C> channelFactory) {
ObjectUtil.checkNotNull(channelFactory, "channelFactory");
if (this.channelFactory != null) {
throw new IllegalStateException("channelFactory set already");
} this.channelFactory = channelFactory;
return self();
}

调用这个方法的递推向上看到:

public B channel(Class<? extends C> channelClass) {
return channelFactory(new ReflectiveChannelFactory<C>(
ObjectUtil.checkNotNull(channelClass, "channelClass")
));
}

这个方法正是在EchoServerServerBootstrap链式设置时调用.channel(NioServerSocketChannel.class)的方法。我们看到,channelClass就是NioServerSocketChannel.classchannelFactory也是以ReflectiveChannelFactory作为具体实例,并且将NioServerSocketChannel.class作为构造参数传递初始化的,所以这回答了反射机制构造的是io.netty.channel.socket.nio.NioServerSocketChannel对象。

继续看NioServerSocketChannel构造方法逻辑做了什么事情,看之前先给出NioServerSocketChannel类继承关系:

Netty之旅三:Netty服务端启动源码分析,一梭子带走!

NioServerSocketChannelNioSocketChannel分别对应服务端和客户端,公共父类都是AbstractNioChannelAbstractChannel,下面介绍创建过程可以参照这个Channel类继承图。进入NioServerSocketChannel构造方法:

/**
* Create a new instance
*/
public NioServerSocketChannel() {
this(newSocket(DEFAULT_SELECTOR_PROVIDER));
}

点击newSocket进去:

private static ServerSocketChannel newSocket(SelectorProvider provider) {
try {
/**
* Use the {@link SelectorProvider} to open {@link SocketChannel} and so remove condition in
* {@link SelectorProvider#provider()} which is called by each ServerSocketChannel.open() otherwise.
*
* See <a href="https://github.com/netty/netty/issues/2308">#2308</a>.
*/
return provider.openServerSocketChannel();
} catch (IOException e) {
throw new ChannelException(
"Failed to open a server socket.", e);
}
}

以上传进来的providerDEFAULT_SELECTOR_PROVIDER即默认的java.nio.channels.spi.SelectorProvider,[代码行9]就是熟悉的jdk nio创建ServerSocketChannel。这样newSocket(DEFAULT_SELECTOR_PROVIDER)就返回了结果ServerSocketChannel,回到NioServerSocketChannel()#this()点进去:

/**
* Create a new instance using the given {@link ServerSocketChannel}.
*/
public NioServerSocketChannel(ServerSocketChannel channel) {
super(null, channel, SelectionKey.OP_ACCEPT);
config = new NioServerSocketChannelConfig(this, javaChannel().socket());
}

以上super代表父类AbstractNioMessageChannel构造方法,点进去看到:

 /**
* @see AbstractNioChannel#AbstractNioChannel(Channel, SelectableChannel, int)
*/
protected AbstractNioMessageChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
super(parent, ch, readInterestOp);
}

以上super代表父类AbstractNioChannel构造方法,点进去看到:

 protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
super(parent);
this.ch = ch;
this.readInterestOp = readInterestOp;
try {
ch.configureBlocking(false);
} catch (IOException e) {
try {
ch.close();
} catch (IOException e2) {
if (logger.isWarnEnabled()) {
logger.warn("Failed to close a partially initialized socket.", e2);
}
} throw new ChannelException("Failed to enter non-blocking mode.", e);
}
}

以上[代码行3]将ServerSocketChannel保存到了AbstractNioChannel#ch成员变量,在上面提到的NioServerSocketChannel构造方法的[代码行6]javaChannel()拿到的就是ch保存的ServerSocketChannel变量。

以上[代码行6]就是熟悉的jdk nio编程设置ServerSocketChannel非阻塞方式。这里还有super父类构造方法,点击进去看到:

 protected AbstractChannel(Channel parent) {
this.parent = parent;
id = newId();
unsafe = newUnsafe();
pipeline = newChannelPipeline();
}

以上构造方法中:

  • parent 属性,代表父 Channel 对象。对于NioServerSocketChannelparentnull
  • id 属性,Channel 编号对象。在构造方法中,通过调用 #newId() 方法进行创建。(这里不细展开Problem-1
  • unsafe 属性,Unsafe 对象。因为Channel 真正的具体操作,是通过调用对应的 Unsafe 对象实施。所以需要在构造方法中,通过调用 #newUnsafe() 方法进行创建。这里的 Unsafe 并不是我们常说的 jdk自带的sun.misc.Unsafe ,而是 io.netty.channel.Channel#Unsafe。(这里不细展开Problem-2
  • pipeline属性默认是DefaultChannelPipeline对象,赋值后在后面为channel绑定端口的时候会用到

通过以上创建channel源码过程分析,总结的流程时序图如下:

Netty之旅三:Netty服务端启动源码分析,一梭子带走!

2. 初始化Channel

Netty之旅三:Netty服务端启动源码分析,一梭子带走!

回到一开始创建ChannelinitAndRegister()入口方法,在创建Channel后紧接着init(channel)进入初始化流程,因为是服务端初始化,所以是ServerBootstrap#init(Channel channel),代码如下:

@Override
void init(Channel channel) throws Exception {
final Map<ChannelOption<?>, Object> options = options0();
synchronized (options) {
setChannelOptions(channel, options, logger);
} final Map<AttributeKey<?>, Object> attrs = attrs0();
synchronized (attrs) {
for (Entry<AttributeKey<?>, Object> e: attrs.entrySet()) {
@SuppressWarnings("unchecked")
AttributeKey<Object> key = (AttributeKey<Object>) e.getKey();
channel.attr(key).set(e.getValue());
}
} ChannelPipeline p = channel.pipeline(); final EventLoopGroup currentChildGroup = childGroup;
final ChannelHandler currentChildHandler = childHandler;
final Entry<ChannelOption<?>, Object>[] currentChildOptions;
final Entry<AttributeKey<?>, Object>[] currentChildAttrs;
synchronized (childOptions) {
currentChildOptions = childOptions.entrySet().toArray(newOptionArray(0));
}
synchronized (childAttrs) {
currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(0));
} p.addLast(new ChannelInitializer<Channel>() {
@Override
public void initChannel(final Channel ch) throws Exception {
final ChannelPipeline pipeline = ch.pipeline();
ChannelHandler handler = config.handler();
if (handler != null) {
pipeline.addLast(handler);
} ch.eventLoop().execute(new Runnable() {
@Override
public void run() {
pipeline.addLast(new ServerBootstrapAcceptor(
ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));
}
});
}
});
}
  • [代码 3 - 6 行]: options0()方法返回的options保存了用户在EchoServer中设置自定义的可选项集合,这样ServerBootstrap将配置的选项集合,设置到了 Channel 的可选项集合中。

  • [代码 8 - 15 行]: attrs0()方法返回的attrs保存了用户在EchoServer中设置自定义的属性集合,这样ServerBootstrap将配置的属性集合,设置到了 Channel 的属性集合中。

  • [代码21-28行]:通过局部变量currentChildOptionscurrentChildAttrs保存了用户自定义的childOptionschildAttrs,用于[代码43行] ServerBootstrapAcceptor 构造方法。

  • [代码30-47]]:创建ChannelInitializer 对象,添加到 pipeline 中,用于后续初始化 ChannelHandler pipeline 中,包括用户在EchoServer配置的LoggingHandler和创建的创建 ServerBootstrapAcceptor 对象。

    • [代码行34-37]:添加启动器配置的 LoggingHandlerpipeline 中。

    • [代码行39-45]:创建 ServerBootstrapAcceptor 对象,添加到 pipeline 中。从名字上就可以看出来,ServerBootstrapAcceptor 也是一个 ChannelHandler 实现类,专门用于接受客户端的新连接请求,把新的请求扔给某个事件循环器,我们先不做过多分析。我们发现是使用EventLoop.execute 执行添加的过程,这是为什么呢?同样记录问题(Problem-3)

    • 需要说明的是pipeline 在之前介绍Netty核心组件的时候提到是一个包含ChannelHandlerContext的双向链表,每一个context对于唯一一个ChannelHandler,这里初始化后,ChannelPipeline里就是如下一个结构:

      Netty之旅三:Netty服务端启动源码分析,一梭子带走!

3. 注册Channel

Netty之旅三:Netty服务端启动源码分析,一梭子带走!

初始化Channel一些基本配置和属性完毕后,回到一开始创建ChannelinitAndRegister()入口方法,在初始化Channel后紧接着[代码行17] ChannelFuture regFuture = config().group().register(channel);明显这里是通过EventLoopGroup进入注册流程(EventLoopGroup体系将在后续文章讲解)

EchoServer中启动器同样通过ServerBootstrap#group()设置了NioEventLoopGroup,它继承自MultithreadEventLoopGroup,所以注册流程会进入MultithreadEventLoopGroup重载的register(Channel channel)方法,代码如下:

@Override
public ChannelFuture register(Channel channel) {
return next().register(channel);
}

这里会调用 next() 方法选择出来一个 EventLoop 来注册 Channel,里面实际上使用的是一个叫做 EventExecutorChooser 的东西来选择,它实际上又有两种实现方式 ——PowerOfTwoEventExecutorChooserGenericEventExecutorChooser,本质上就是从 EventExecutor 数组中选择一个 EventExecutor,我们这里就是 NioEventLoop,那么,它们有什么区别呢?(Problem-4:在介绍EventLoopGroup体系的后续文章中将会详细讲解,这里简单地提一下,本质都是按数组长度取余数 ,不过,2 的 N 次方的形式更高效。

接着,来到 NioEventLoopregister(channel) 方法,你会不会问找不到该方法?提示NioEventLoop 继承SingleThreadEventLoop,所以父类方法:

@Override
public ChannelFuture register(Channel channel) {
return register(new DefaultChannelPromise(channel, this));
} @Override
public ChannelFuture register(final ChannelPromise promise) {
ObjectUtil.checkNotNull(promise, "promise");
promise.channel().unsafe().register(this, promise);
return promise;
}

可以看到,先创建了一个叫做 ChannelPromise 的东西,它是 ChannelFuture 的子类。[代码行9]又调回了 ChannelUnsaferegister () 方法,这里第一个参数是 this,也就是 NioEventLoop,第二个参数是刚创建的 ChannelPromise

点击 AbstractUnsafe#register(EventLoop eventLoop, final ChannelPromise promise) 方法进去,代码如下:

 public final void register(EventLoop eventLoop, final ChannelPromise promise) {
if (eventLoop == null) {
throw new NullPointerException("eventLoop");
}
if (isRegistered()) {
promise.setFailure(new IllegalStateException("registered to an event loop already"));
return;
}
if (!isCompatible(eventLoop)) {
promise.setFailure(
new IllegalStateException("incompatible event loop type: " + eventLoop.getClass().getName()));
return;
} AbstractChannel.this.eventLoop = eventLoop; if (eventLoop.inEventLoop()) {
register0(promise);
} else {
try {
eventLoop.execute(new Runnable() {
@Override
public void run() {
register0(promise);
}
});
} catch (Throwable t) {
logger.warn(
"Force-closing a channel whose registration task was not accepted by an event loop: {}",
AbstractChannel.this, t);
closeForcibly();
closeFuture.setClosed();
safeSetFailure(promise, t);
}
}
}

[代码行15]这行代码是设置 ChanneleventLoop 属性。这行前面的代码主要是在校验传入的 eventLoop 参数非空,校验是否有注册过以及校验 ChanneleventLoop 类型是否匹配。

[代码18、24]接着,跟踪到 AbstractUnsafe#register0(ChannelPromise promise) 方法中:

private void register0(ChannelPromise promise) {
try {
// check if the channel is still open as it could be closed in the mean time when the register
// call was outside of the eventLoop
if (!promise.setUncancellable() || !ensureOpen(promise)) {
return;
}
boolean firstRegistration = neverRegistered;
doRegister();
neverRegistered = false;
registered = true; // Ensure we call handlerAdded(...) before we actually notify the promise. This is needed as the
// user may already fire events through the pipeline in the ChannelFutureListener.
pipeline.invokeHandlerAddedIfNeeded(); safeSetSuccess(promise);
pipeline.fireChannelRegistered();
// Only fire a channelActive if the channel has never been registered. This prevents firing
// multiple channel actives if the channel is deregistered and re-registered.
if (isActive()) {
if (firstRegistration) {
pipeline.fireChannelActive();
} else if (config().isAutoRead()) {
// This channel was registered before and autoRead() is set. This means we need to begin read
// again so that we process inbound data.
//
// See https://github.com/netty/netty/issues/4805
beginRead();
}
}
} catch (Throwable t) {
// Close the channel directly to avoid FD leak.
closeForcibly();
closeFuture.setClosed();
safeSetFailure(promise, t);
}
}

[代码行9]进入 AbstractNioChannel#doRegister() 方法:

protected void doRegister() throws Exception {
boolean selected = false;
for (;;) {
try {
selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this);
return;
} catch (CancelledKeyException e) {
if (!selected) {
// Force the Selector to select now as the "canceled" SelectionKey may still be
// cached and not removed because no Select.select(..) operation was called yet.
eventLoop().selectNow();
selected = true;
} else {
// We forced a select operation on the selector before but the SelectionKey is still cached
// for whatever reason. JDK bug ?
throw e;
}
}
}
}

[代码行5]关键一行代码,将 Java 原生NIO Selector与 Java 原生 NIOChannel 对象(ServerSocketChannel) 绑定在一起,并将当前 Netty 的Channel通过 attachment 的形式绑定到 SelectionKey 上:

  • 调用 #unwrappedSelector() 方法,返回 Java 原生 NIO Selector 对象,而且每个NioEventLoopSelector唯一一对应。
  • 调用 SelectableChannel#register(Selector sel, int ops, Object att) 方法,注册 Java 原生NIOChannel 对象到 NIO Selector对象上。

通过以上注册channel源码分析,总结流程的时序图如下:

Netty之旅三:Netty服务端启动源码分析,一梭子带走!

4. 绑定端口

Netty之旅三:Netty服务端启动源码分析,一梭子带走!

注册完Channel最后回到AbstractBootstrap#doBind() 方法,分析 Channel 的端口绑定逻辑。进入doBind0代码如下:

private static void doBind0(
final ChannelFuture regFuture, final Channel channel,
final SocketAddress localAddress, final ChannelPromise promise) { // This method is invoked before channelRegistered() is triggered. Give user handlers a chance to set up
// the pipeline in its channelRegistered() implementation.
channel.eventLoop().execute(new Runnable() {
@Override
public void run() {
if (regFuture.isSuccess()) {
channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
} else {
promise.setFailure(regFuture.cause());
}
}
});
}
  • [代码行7]:在前面Channel 注册成功的条件下,调用 EventLoop执行 Channel 的端口绑定逻辑。但是,实际上当前线程已经是 EventLoop所在的线程了,为何还要这样操作呢?答案在【第 5 至 6 行】的英语注释,这里作为一个问题记着(Problem-5)。
  • [代码行11]:进入AbstractChannel#bind(SocketAddress localAddress, ChannelPromise promise),同样立即异步返回并添加ChannelFutureListener.CLOSE_ON_FAILURE监听事件。
  • [代码行13]:如果绑定端口之前的操作并没有成功,自然也就不能进行端口绑定操作了,通过promise记录异常原因。

AbstractChannel#bind(SocketAddress localAddress, ChannelPromise promise)方法如下:

 public ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {
return pipeline.bind(localAddress, promise);
}

pipeline是之前创建channel的时候创建的DefaultChannelPipeline,进入该方法:

 public final ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {
return tail.bind(localAddress, promise);
}

[在分析初始化流程的时候最后画一个DefaultChannelPipeline内部的结构,能够便于分析后面进入DefaultChannelPipeline一系列bind方法。]

首先,tail代表TailContext,进入AbstractChannelHandlerContext# bind(final SocketAddress localAddress, final ChannelPromise promise)方法:

 public ChannelFuture bind(final SocketAddress localAddress, final ChannelPromise promise) {
//省略部分代码
final AbstractChannelHandlerContext next = findContextOutbound(MASK_BIND);
EventExecutor executor = next.executor();
if (executor.inEventLoop()) {
next.invokeBind(localAddress, promise);
} else {
safeExecute(executor, new Runnable() {
@Override
public void run() {
next.invokeBind(localAddress, promise);
}
}, promise, null);
}
return promise;
}

[代码行3]:findContextOutbound方法里主要是执行ctx = ctx.prev;那么得到的next就是绑定LoggingHandlercontext

[代码行6]:进入invokeBind(localAddress, promise)方法并直接执行LoggingHandler#bind(this, localAddress, promise),进入后的方法如下:

 public void bind(ChannelHandlerContext ctx, SocketAddress localAddress, ChannelPromise promise) throws Exception {
if (logger.isEnabled(internalLevel)) {
logger.log(internalLevel, format(ctx, "BIND", localAddress));
}
ctx.bind(localAddress, promise);
}

设置了LoggingHandler的日志基本级别为默认的INFO后,进行绑定操作的信息打印。接着,继续循环到AbstractChannelHandlerContext# bind(final SocketAddress localAddress, final ChannelPromise promise)方法执行ctx = ctx.prev取出HeadContext进入到bind方法:

 public void bind(ChannelHandlerContext ctx, SocketAddress localAddress, ChannelPromise promise) {
unsafe.bind(localAddress, promise);
}

兜兜转转,最终跳出了pipeline轮回到AbstractUnsafe#bind(final SocketAddress localAddress, final ChannelPromise promise) 方法,Channel 的端口绑定逻辑。代码如下:

public final void bind(final SocketAddress localAddress, final ChannelPromise promise) {
//此处有省略...
boolean wasActive = isActive();
try {
doBind(localAddress);
} catch (Throwable t) {
safeSetFailure(promise, t);
closeIfClosed();
return;
}
//此处有省略...
}

做实事方法doBind进入后如下:

@Override
protected void doBind(SocketAddress localAddress) throws Exception {
if (PlatformDependent.javaVersion() >= 7) {
javaChannel().bind(localAddress, config.getBacklog());
} else {
javaChannel().socket().bind(localAddress, config.getBacklog());
}
}

到了此处,服务端的 Java 原生 NIO ServerSocketChannel 终于绑定上了端口。

三、问题归纳

  • Problem-1: 创建Channel流程中AbstractChannel构造函数中为channel分配ID的算法如何实现?
  • Problem-2: AbstractChannel内部类AbstractUnsafe的作用?
  • Problem-3: 初始化channel流程中pipeline 添加ServerBootstrapAcceptor 是通过EventLoop.execute 执行添加的过程,这是为什么呢?
  • Problem-4:注册channel流程中PowerOfTwoEventExecutorChooserGenericEventExecutorChooser的区别和优化原理?
  • Problem-5:绑定端口流程中调用 EventLoop执行 Channel 的端口绑定逻辑。但是,实际上当前线程已经是 EventLoop所在的线程了,为何还要这样操作呢?

小结

通过对Netty服务端启动流程源码分析,我们发现了在使用NIO的模式下,服务端启动流程其实就是封装了JDK NIO编程在服务端启动的流程。只不过对原生JDK NIO进行了增强和优化,同时从架构设计上简化了服务端流程的编写。

最重要的是感谢彤哥、艿艿和俞超-闪电侠这些大佬前期的分享,能够让更多人学习源码的旅途少走很多弯路,谢谢!

欢迎关注:

Netty之旅三:Netty服务端启动源码分析,一梭子带走!

Netty之旅三:Netty服务端启动源码分析,一梭子带走!的更多相关文章

  1. Netty源码分析 (三)----- 服务端启动源码分析

    本文接着前两篇文章来讲,主要讲服务端类剩下的部分,我们还是来先看看服务端的代码 /** * Created by chenhao on 2019/9/4. */ public final class ...

  2. ActivityManagerService服务线程启动源码分析【转】

    本文转载自:http://blog.csdn.net/yangwen123/article/details/8177702 Android系统服务线程都驻留在SystemServer进程中,由Syst ...

  3. 原理剖析-Netty之服务端启动工作原理分析&lpar;下&rpar;

    一.大致介绍 1.由于篇幅过长难以发布,所以本章节接着上一节来的,上一章节为[原理剖析(第 010 篇)Netty之服务端启动工作原理分析(上)]: 2.那么本章节就继续分析Netty的服务端启动,分 ...

  4. 原理剖析-Netty之服务端启动工作原理分析&lpar;上&rpar;

    一.大致介绍 1.Netty这个词,对于熟悉并发的童鞋一点都不陌生,它是一个异步事件驱动型的网络通信框架: 2.使用Netty不需要我们关注过多NIO的API操作,简简单单的使用即可,非常方便,开发门 ...

  5. Netty 心跳服务之 IdleStateHandler 源码分析

    前言:Netty 提供的心跳介绍 Netty 作为一个网络框架,提供了诸多功能,比如我们之前说的编解码,Netty 准备很多现成的编解码器,同时,Netty 还为我们准备了网络中,非常重要的一个服务- ...

  6. java开源即时通讯软件服务端openfire源码构建

    java开源即时通讯软件服务端openfire源码构建 本文使用最新的openfire主干代码为例,讲解了如何搭建一个openfire开源开发环境,正在实现自己写java聊天软件: 编译环境搭建 调试 ...

  7. RocketMQ中Broker的启动源码分析(一)

    在RocketMQ中,使用BrokerStartup作为启动类,相较于NameServer的启动,Broker作为RocketMQ的核心可复杂得多 [RocketMQ中NameServer的启动源码分 ...

  8. RocketMQ中Broker的启动源码分析(二)

    接着上一篇博客  [RocketMQ中Broker的启动源码分析(一)] 在完成准备工作后,调用start方法: public static BrokerController start(Broker ...

  9. RocketMQ中PullConsumer的启动源码分析

    通过DefaultMQPullConsumer作为默认实现,这里的启动过程和Producer很相似,但相比复杂一些 [RocketMQ中Producer的启动源码分析] DefaultMQPullCo ...

随机推荐

  1. Windows Server 2008 双网卡同时上内外网 不能正常使用

    Windows server 2008 32位下,双网卡同时上内外网,并提供VPN服务,遇见的奇怪问题 1.服务器配置 2.网络配置 以太网适配器 内部连接: 连接特定的 DNS 后缀 . . . . ...

  2. Shell命令&lowbar;正则表达式

    正则表达式是包含匹配,通配符是完全匹配 基础正则表达式 test.txt示例文件 1 2 3 4 5 6 7 8 9 10 11 12 Mr. James said: he was the hones ...

  3. 11g Physical Standby配置

    一,准备   Database DB_UNIQUE_NAME Oracle Net Service Name Primary PROD PROD Physical standby PRODDG PRO ...

  4. position置顶或某固定位置 兼容ie6ie7

    用absolute来模拟fixed效果: /*相当于正常的position:fixed;top:0 */.sl_fixed_top{bottom:auto;top:0;_bottom:auto;_to ...

  5. 12Spring&lowbar;AOP编程&lpar;AspectJ&rpar;&lowbar;前置通知

    接下里的博客会一篇一篇的讲解每一个通知.其实AOP_AspectJ的编程与传统的AOP的编程的最大的区别就是写一个Aspect 支持多个Advice和多个PointCut .而且我们写AOP_Aspc ...

  6. 【Xamarin挖墙脚系列:时刻下载最新的Mac环境下的Xamarin安装包】

    原文:[Xamarin挖墙脚系列:时刻下载最新的Mac环境下的Xamarin安装包] 打开这两个地址,就能看到最新的安装包了.... http://www.jianshu.com/p/c67c14b3 ...

  7. js中跳转

    <li><a href="javascript:recordRescSifting('+subject.subId+');">'+subject.subNa ...

  8. codeforces 631C&period; Report

    题目链接 按题目给出的r, 维护一个递减的数列,然后在末尾补一个0. 比如样例给出的 4 21 2 4 32 31 2 递减的数列就是3 2 0, 操作的时候, 先变[3, 2), 然后变[2, 0) ...

  9. 使用Java语言开发微信公众平台&lpar;七&rpar;——音乐消息的回复

    在上一节课程中,我们学习了图片消息的回复功能.根据微信公众平台的消息类型显示,微信共支持文本.图片.语音.视频.音乐.图文等6种消息类型的回复: 其中,我们已经实现了文本.图文.图片等消息的回复处理, ...

  10. 一个非常好用的框架-AngularJS&lpar;一&rpar;

      前  言           AngularJS诞生于2009年,由Misko Hevery 等人创建,后为Google所收购.是一款优秀的前端JS框架,已经被用于Google的多款产品当中.An ...