/*
题意:有 n 个站点(编号1...n),每一个站点都有一个能量值,为了不让这些能量值连接起来,要用
坦克占领这个站点!已知站点的 之间的距离,每个坦克从0点出发到某一个站点,1 unit distance costs 1 unit oil!
最后占领的所有的站点的能量值之和为总能量值的一半还要多,问最少耗油多少! */ /*
思路:不同的坦克会占领不同的站点,耗油最少那就是路程最少,所以我们先将从 0点到其他各点的
最短距离求出来!也就是d[i]的值!然后我们又知道每一个站点的所具有的能量值!也就是w[i];
最后求出满足占领站点的能量比总能量的一半多并且路程最少。。。直接01背包走起!
*/
#include<iostream>
#include<queue>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#define N 10005
#define INF 0x3f3f3f3f
using namespace std; int w[]; struct EDGE{
int u, v, nt, dist;
EDGE(){} EDGE(int u, int v, int nt, int dist){
this->u=u;
this->v=v;
this->nt=nt;
this->dist=dist;
}
}; EDGE edge[N*];
int first[];
int cnt;
queue<pair<int, int> >q;
int n, m;
int dp[];
int d[];
int map[][]; void addEdge(int u, int v, int dist){
edge[cnt++]=EDGE(u, v, first[u], dist);
first[u]=cnt-;
edge[cnt++]=EDGE(v, u, first[v], dist);
first[v]=cnt-;
} void Dijkstra(){
d[]=;
q.push(make_pair(, ));
while(!q.empty()){
pair<int,int> cur=q.front();
q.pop();
int u=cur.second;
if(d[u] != cur.first) continue;
for(int e=first[u]; e!=-; e=edge[e].nt){
int v=edge[e].v, dist=edge[e].dist;
if(d[v] > d[u] + dist){
d[v] = d[u] + dist;
q.push(make_pair(d[v], v));
}
}
}
} int main(){
int t;
int sumP, sumD;
scanf("%d", &t);
while(t--){
scanf("%d%d", &n, &m);
cnt=;
memset(d, 0x3f, sizeof(d));
memset(first, -, sizeof(first));
for(int i=; i<=n; ++i)
for(int j=; j<=n; ++j)
map[i][j]=INF;
while(m--){
int u, v, dist;
scanf("%d%d%d", &u, &v, &dist);
if(map[u][v]>dist)
map[u][v]=map[v][u]=dist;
}
for(int i=; i<=n; ++i)
for(int j=; j<=i; ++j)
if(map[i][j]!=INF)
addEdge(i, j, map[i][j]);
Dijkstra();//求出 0点到其他个点的最短的距离!
sumP=sumD=;
for(int i=; i<=n; ++i){
scanf("%d", &w[i]);
sumP+=w[i];
sumD+=d[i];
}
memset(dp, 0x3f, sizeof(dp));//初始背包的总价值为无穷大
dp[]=; //zeroOnePackage... d[i]相当于价值(也就是耗油量), w[i]相当于容积(也就是能量值)
for(int i=; i<=n; ++i)
for(int j=sumP; j>=w[i]; --j)
dp[j]=min(dp[j], dp[j-w[i]]+d[i]); int maxCost=INF;
for(int i=sumP/+; i<=sumP; ++i)//注意是sumP/2+1(因为要比一半多)
if(maxCost>dp[i])
maxCost=dp[i];
if(maxCost==INF)
printf("impossible\n");
else printf("%d\n", maxCost);
}
return ;
}
/*
思路:dp[i][j]表示到达 i站点, 并且占领的能量值为 j时的耗油最小值!
开始想用的是spfa算法,并且在进行节点之间距离松弛的时候,也将 背包融进来,但是超时啊!
好桑心.....
*/ #include<iostream>
#include<queue>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#define N 10005
#define INF 0x3f3f3f3f
using namespace std; int w[]; struct EDGE{
int u, v, nt, dist;
EDGE(){} EDGE(int u, int v, int nt, int dist){
this->u=u;
this->v=v;
this->nt=nt;
this->dist=dist;
}
}; EDGE edge[N*];
int first[];
int cnt;
queue<pair<int, int> >q;
int vis[];
int n, m, sum;
int dp[][];
int map[][]; void addEdge(int u, int v, int dist){
edge[cnt++]=EDGE(u, v, first[u], dist);
first[u]=cnt-;
edge[cnt++]=EDGE(v, u, first[v], dist);
first[v]=cnt-;
} void spfa(){
dp[][]=;
q.push(make_pair(, ));
vis[]=;
while(!q.empty()){
pair<int,int> cur=q.front();
q.pop();
int u=cur.second;
vis[u]=;
for(int e=first[u]; e!=-; e=edge[e].nt){
int v=edge[e].v, dist=edge[e].dist;
for(int j=w[v]; j<=sum; ++j)
if(dp[v][j] > dp[u][j-w[v]] + dist){
dp[v][j] = dp[u][j-w[v]] + dist;
if(!vis[v]){
vis[v]=;
q.push(make_pair(dp[v][j], v));
}
}
}
}
} int main(){
int t;
scanf("%d", &t);
while(t--){
scanf("%d%d", &n, &m);
cnt=;
memset(first, -, sizeof(first));
for(int i=; i<=n; ++i)
for(int j=; j<=n; ++j)
map[i][j]=INF;
while(m--){
int u, v, dist;
scanf("%d%d%d", &u, &v, &dist);
if(map[u][v]>dist)
map[u][v]=map[v][u]=dist;
}
for(int i=; i<=n; ++i)
for(int j=; j<=n; ++j)
if(map[i][j]!=INF)
addEdge(i, j, map[i][j]);
for(int i=; i<=n; ++i){//最后将1...n节点的最优值汇聚到 第 n+1个节点上
edge[cnt++]=EDGE(i, n+, first[i], );
first[i]=cnt-;
}
sum=;
for(int i=; i<=n; ++i){
scanf("%d", &w[i]);
sum+=w[i];
}
w[n+]=;
for(int i=; i<n+; ++i)
for(int j=; j<sum+; ++j)
dp[i][j]=INF;
spfa();
int maxCost=INF;
for(int i=sum/+; i<=sum; ++i)
if(maxCost>dp[n+][i])
maxCost=dp[n+][i];
if(maxCost==INF)
printf("impossible\n");
else printf("%d\n", maxCost);
}
return ;
}