将乘客按照\(D_i\)从小到大排序并重新标号。对于服务站\(j\),如果\(S_j \mod T \in (D_i , D_{i+1})\),那么可以少接一些水,在保证司机有水喝的情况下让编号在\([x,i](x \in [1,i])\)的乘客下车(我们将这个区间称作这个服务区的下车区间),然后到达这个服务站接水。区间\([D_x , D_i]\)之间有服务区也没关系,只要在服务区不接水就可以了。
所以有DP:设\(f_i\)表示考虑了前\(i\)个乘客,最少花费的费用是多少。转移有:①\(f_i = f_{i-1} + \lfloor \frac{X - D_i}{T} \rfloor \times W\),表示第\(i\)个人一直坐到终点;②如果在\((D_i , D_{i+1})\)内有服务站,还有转移\(f_i = \min\limits_{0 \leq j < i} f_j + (i - j) \times W \times cnt + \sum\limits_{k = j + 1}^i C_k\),其中\(cnt\)表示的是\(j+1\)到\(i\)的乘客的最少饮水次数,也就是\(\min\limits_{S_k \mod T \in (D_i , D_{i+1})}\lfloor \frac{S_k}{T} \rfloor\)
对于一些乘客,如果我们已经确定了他们要下车,那么一定是越早下车越好,也就是说所有服务站的下车区间一定无交,所以上面②的转移是正确的。
把\(\sum\limits_{k = j + 1}^i C_k\)变成前缀和,就是一个可以斜率优化的式子,栈维护凸包即可。
#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cstring>
#define INF 1e18
//This code is written by Itst
using namespace std;
#define int long long
inline int read(){
int a = 0;
char c = getchar();
while(!isdigit(c))
c = getchar();
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return a;
}
#define PII pair < int , int >
#define st first
#define nd second
const int MAXN = 2e5 + 3;
int N , M , X , W , T , top = 1;
int dp[MAXN] , dis[MAXN] , stk[MAXN];
struct machine{
int D , C;
bool operator <(const machine a)const{return D < a.D;}
}now[MAXN];
long double calc(PII A , PII B){
return 1.0 * (A.nd - B.nd) / (B.st - A.st);
}
PII create(int x){return PII(-x * W , dp[x] - now[x].C);}
bool chk(int a , int b , int c){
PII A = create(a) , B = create(b) , C = create(c);
return calc(A , B) > calc(A , C);
}
int calc(PII a , int x){return a.st * x + a.nd;}
int get(int X){
int L = 1 , R = top;
while(L < R){
int mid = (L + R) >> 1;
calc(create(stk[mid]) , X) > calc(create(stk[mid + 1]) , X) ? L = mid + 1 : R = mid;
}
return calc(create(stk[L]) , X);
}
bool cmp(int a , int b){return a % T < b % T;}
signed main(){
#ifndef ONLINE_JUDGE
freopen("eternity.in","r",stdin);
freopen("eternity.out","w",stdout);
#endif
X = read(); N = read(); M = read(); W = read(); T = read();
for(int i = 1 ; i <= N ; ++i)
dis[i] = read();
dis[++N] = X;
for(int i = 1 ; i <= M ; ++i){
now[i].D = read();
now[i].C = read();
}
sort(dis + 1 , dis + N + 1 , cmp);
sort(now + 1 , now + M + 1);
now[M + 1].D = T;
for(int i = 1 ; i <= M ; ++i)
now[i].C = now[i].C + now[i - 1].C;
memset(dp , 0x3f , sizeof(dp));
dp[0] = 0; int pos = 1;
while(pos <= N && dis[pos] % T <= now[1].D) ++pos;
for(int i = 1 ; i <= M ; ++i){
int Min = INF;
while(pos <= N && dis[pos] % T < now[i + 1].D)
Min = min(Min , dis[pos++] / T);
dp[i] = dp[i - 1] + ((X - now[i].D) / T + 1) * W;
if(Min != INF)
dp[i] = min(dp[i] , get(Min) + Min * W * i + now[i].C);
while(top > 1 && chk(stk[top - 1] , stk[top] , i))
--top;
stk[++top] = i;
}
cout << dp[M] + (X / T + 1) * W;
return 0;
}