**
一 tf.concat( ) 函数–合并
**
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
In [ 2 ]: a = tf.ones([ 4 , 35 , 8 ])
In [ 3 ]: b = tf.ones([ 2 , 35 , 8 ])
In [ 4 ]: c = tf.concat([a,b],axis = 0 )
In [ 5 ]: c.shape
Out[ 5 ]: TensorShape([ 6 , 35 , 8 ])
In [ 6 ]: a = tf.ones([ 4 , 32 , 8 ])
In [ 7 ]: b = tf.ones([ 4 , 3 , 8 ])
In [ 8 ]: c = tf.concat([a,b],axis = 1 )
In [ 9 ]: c.shape
Out[ 9 ]: TensorShape([ 4 , 35 , 8 ])
|
**
二 tf.stack( ) 函数–数据的堆叠,创建新的维度
**
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
In [ 2 ]: a = tf.ones([ 4 , 35 , 8 ])
In [ 3 ]: a.shape
Out[ 3 ]: TensorShape([ 4 , 35 , 8 ])
In [ 4 ]: b = tf.ones([ 4 , 35 , 8 ])
In [ 5 ]: b.shape
Out[ 5 ]: TensorShape([ 4 , 35 , 8 ])
In [ 6 ]: tf.concat([a,b],axis = - 1 ).shape
Out[ 6 ]: TensorShape([ 4 , 35 , 16 ])
In [ 7 ]: tf.stack([a,b],axis = 0 ).shape
Out[ 7 ]: TensorShape([ 2 , 4 , 35 , 8 ])
In [ 8 ]: tf.stack([a,b],axis = 3 ).shape
Out[ 8 ]: TensorShape([ 4 , 35 , 8 , 2 ])
|
**
三 tf.unstack( )函数–解堆叠
**
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
In [ 16 ]: a = tf.ones([ 4 , 35 , 8 ])
In [ 17 ]: b = tf.ones([ 4 , 35 , 8 ])
In [ 18 ]: c = tf.stack([a,b],axis = 0 )
In [ 19 ]: a.shape,b.shape,c.shape
Out[ 19 ]: (TensorShape([ 4 , 35 , 8 ]), TensorShape([ 4 , 35 , 8 ]), TensorShape([ 2 , 4 , 35 , 8 ]))
In [ 20 ]: aa,bb = tf.unstack(c,axis = 0 )
In [ 21 ]: aa.shape,bb.shape
Out[ 21 ]: (TensorShape([ 4 , 35 , 8 ]), TensorShape([ 4 , 35 , 8 ]))
In [ 22 ]: res = tf.unstack(c,axis = 1 )
In [ 23 ]: len (res)
Out[ 23 ]: 4
|
**
四 tf.split( ) 函数
**
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
In [ 16 ]: a = tf.ones([ 4 , 35 , 8 ])
In [ 17 ]: b = tf.ones([ 4 , 35 , 8 ])
In [ 18 ]: c = tf.stack([a,b],axis = 0 )
In [ 19 ]: a.shape,b.shape,c.shape
Out[ 19 ]: (TensorShape([ 4 , 35 , 8 ]), TensorShape([ 4 , 35 , 8 ]), TensorShape([ 2 , 4 , 35 , 8 ]))
In [ 20 ]: aa,bb = tf.unstack(c,axis = 0 )
In [ 21 ]: aa.shape,bb.shape
Out[ 21 ]: (TensorShape([ 4 , 35 , 8 ]), TensorShape([ 4 , 35 , 8 ]))
In [ 22 ]: res = tf.unstack(c,axis = 1 )
In [ 23 ]: len (res)
Out[ 23 ]: 4
|
以上这篇TensorFlow2.0:张量的合并与分割实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/meijie2018_1/article/details/99439186