python 装饰器的基本使用

时间:2022-01-14 07:11:58

知识点

  • 简单的装饰器
  • 带有参数的装饰器
  • 带有自定义参数的装饰器
  • 类装饰器
  • 装饰器嵌套
  • @functools.wrap装饰器使用

基础使用

简单的装饰器

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
def my_decorator(func):
  def wrapper():
    print('wrapper of decorator')
    func()
  return wrapper()
 
 
def test():
  print('test done.')
 
test = my_decorator(test)
test
 
输出:
wrapper of decorator
test done.

这段代码中,变量test指向了内部函数wrapper(), 而内部函数wrapper()中又会调用原函数test(),因此最后调用test()时,就会打印'wrapper of decorator' 然后输出 'test done.'

这里的函数my_decorator()就是一个装饰器,它把真正需要执行的函数test()包裹在其中,并且改变了它的行为,但是原函数test()不变。

上述代码在Python中更简单、更优雅的表示:

?
1
2
3
4
5
6
7
8
9
10
11
def my_decorator(func):
  def wrapper():
    print('wrapper of decorator')
    func()
  return wrapper()
 
@my_decorator
def test():
  print('test done.')
 
test

这里的@, 我们称为语法糖,@my_decorator就相当于前面的test=my_decorator(test)语句

如果程序中又其他函数需要类似装饰,只需要加上@decorator就可以,提高函数的重复利用和程序可读性

带有参数的装饰器

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
def args_decorator(func):
  def wrapper(*args, **kwargs):
    print('wrapper of decorator')
    func(*args, **kwargs)
  return wrapper
 
@args_decorator
def identity(name, message):
  print('identity done.')
  print(name, message)
 
identity('changhao', 'hello')
 
输出:
wrapper of decorator
identity done.
changhao hello

通常情况下,会把args和*kwargs,作为装饰器内部函数wrapper()的参数。 表示接受任意数量和类型的参数

带有自定义参数的装饰器

定义一个参数,表示装饰器内部函数被执行的次数,可以写成这个形式:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
def repeat(num):
  def my_decorator(func):
    def wrapper(*args, **kwargs):
      for i in range(num):
        func(*args, **kwargs)
    return wrapper
  return my_decorator
 
 
@repeat(3)
def showname(message):
  print(message)
 
showname('changhao')
 
输出:
changhao
changhao
changhao

类装饰器

类也可以作装饰器,类装饰器主要依赖于函数 __call__每当调用一个示例时,函数__call__()就会被执行一次。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Count:
  def __init__(self, func):
    self.func = func
    self.num_calls = 0
 
  def __call__(self, *args, **kwargs):
    self.num_calls += 1
    print('num of calls is: {}'.format(self.num_calls))
    return self.func(*args, **kwargs)
 
 
@Count
def example():
  print('example done.')
 
example()
example()
 
输出:
num of calls is: 1
example done.
num of calls is: 2
example done.

这里定义了类Count,初始化时传入原函数func(),而__call__()函数表示让变量num_calls自增1,然后打印,并且调用原函数。因此我们第一次调用函数example()时,num_calls的值是1,而第一次调用时,值变成了2。

装饰器的嵌套

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import functools
def my_decorator1(func):
  @functools.wraps(func)
  def wrapper(*args, **kwargs):
    print('execute decorator1')
    func(*args, **kwargs)
  return wrapper
 
 
def my_decorator2(func):
  @functools.wraps(func)
  def wrapper(*args, **kwargs):
    print('execute decorator2')
    func(*args, **kwargs)
  return wrapper
 
 
@my_decorator1
@my_decorator2
def test2(message):
  print(message)
 
 
test2('changhao')
 
输出:
execute decorator1
execute decorator2
changhao

类装饰器

类也可以作装饰器,类装饰器主要依赖于函数 __call__每当调用一个示例时,函数__call__()就会被执行一次。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Count:
  def __init__(self, func):
    self.func = func
    self.num_calls = 0
 
  def __call__(self, *args, **kwargs):
    self.num_calls += 1
    print('num of calls is: {}'.format(self.num_calls))
    return self.func(*args, **kwargs)
 
 
@Count
def example():
  print('example done.')
 
example()
example()
 
输出:
num of calls is: 1
example done.
num of calls is: 2
example done.

这里定义了类Count,初始化时传入原函数func(),而__call__()函数表示让变量num_calls自增1,然后打印,并且调用原函数。因此我们第一次调用函数example()时,num_calls的值是1,而第一次调用时,值变成了2。

装饰器的嵌套

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import functools
def my_decorator1(func):
  @functools.wraps(func)
  def wrapper(*args, **kwargs):
    print('execute decorator1')
    func(*args, **kwargs)
  return wrapper
 
 
def my_decorator2(func):
  @functools.wraps(func)
  def wrapper(*args, **kwargs):
    print('execute decorator2')
    func(*args, **kwargs)
  return wrapper
 
 
@my_decorator1
@my_decorator2
def test2(message):
  print(message)
 
 
test2('changhao')
 
输出:
execute decorator1
execute decorator2
changhao

@functools.wrap装饰器使用

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import functools
def my_decorator(func):
  @functools.wraps(func)
  def wrapper(*args, **kwargs):
    print('wrapper of decorator')
    func(*args, **kwargs)
    return wrapper
 
@my_decorator
def test3(message):
  print(message)
 
test3.__name__
 
输出
test3

通常使用内置的装饰器@functools.wrap,他会保留原函数的元信息(也就是将原函数的元信息,拷贝到对应的装饰器里)

装饰器用法实例

身份认证

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import functools
 
def authenticate(func):
 @functools.wraps(func)
 def wrapper(*args, **kwargs):
  request = args[0]
  if check_user_logged_in(request):
   return func(*args, **kwargs)
    else:
   raise Exception('Authentication failed')
  return wrapper
 
@authenticate
def post_comment(request):
 pass

这段代码中,定义了装饰器authenticate;而函数post_comment(),则表示发表用户对某篇文章的评论。每次调用这个函数前,都会检查用户是否处于登录状态,如果是登录状态,则允许这项操作;如果没有登录,则不允许。

日志记录

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import time
import functools
 
def log_execution_time(func):
 @functools.wraps(func)
 def wrapper(*args, **kwargs):
  start = time.perf_counter()
  res = func(*args, **kwargs)
  end = time.perf_counter()
  print('{} took {} ms'.format(func.__name__, (end - start) * 1000))
  return wrapper
 
@log_execution_time
def calculate_similarity(times):
 pass

这里装饰器log_execution_time记录某个函数的运行时间,并返回其执行结果。如果你想计算任何函数的执行时间,在这个函数上方加上@log_execution_time即可。

总结

所谓装饰器,其实就是通过装饰器函数,来修改原函数的一些功能,使得原函数不需要修改。

以上就是python 装饰器的基本使用的详细内容,更多关于python 装饰器的资料请关注服务器之家其它相关文章!

原文链接:https://segmentfault.com/a/1190000038959829