如何在多线程leader-follower模式下正确的使用boost::asio。

时间:2021-05-05 15:26:02
#include <assert.h>
#include <signal.h>
#include <unistd.h>
#include <iostream>
#include <string>
#include <deque>
#include <set>
#include "boost/asio.hpp"
#include "boost/thread.hpp"
#include "boost/bind.hpp"
#include "boost/shared_ptr.hpp"
#include "boost/enable_shared_from_this.hpp"
#include "boost/thread/thread.hpp"
#include "boost/date_time/posix_time/posix_time.hpp"
#include "boost/atomic.hpp" namespace {
class EchoServer; typedef boost::shared_ptr<EchoServer> EchoServerPtr;
typedef boost::shared_ptr<boost::asio::io_service> IOServicePtr;
typedef boost::shared_ptr<boost::asio::ip::tcp::socket> SocketPtr;
class Connection;
typedef boost::shared_ptr<Connection> ConnPtr;
typedef boost::shared_ptr<std::string> StringPtr;
typedef boost::shared_ptr<boost::asio::deadline_timer> TimerPtr; // 准则1:
// 一个Socket永远不要调用async_read/async_write超过1次,可以参考boost doc:
// This operation is implemented in terms of zero or more calls to the stream's async_write_some function, and is known as a composed operation. The program must ensure that the stream performs no other write operations (such as async_write, the stream's async_write_some function, or any other composed operations that perform writes) until this operation completes.
// 也就是一定要前一个async操作完成再发起下一个!! // 准则2:
// 操作1个socket, 在多线程条件下一定要加锁处理, 一把大锁解决一切问题, 其他用法都是非线程安全的.
// 也就是说同步close/async_read/async_write这三个函数调用即可. class Connection : public boost::enable_shared_from_this<Connection> {
public:
enum ConnStatus {
kConnected = 0,
kError = 1,
kClosed = 2,
};
Connection(SocketPtr socket) : status_(kConnected), socket_(socket) {
}
~Connection() {
// 可以在这里将write_queue中的待发消息进行重试等逻辑处理
std::cout << __FUNCTION__ << std::endl;
}
void Start() {
socket_->async_receive(boost::asio::buffer(msgbuf_, sizeof(msgbuf_)), boost::bind(&Connection::ReadHandler, shared_from_this(), _1, _2));
}
void Close() { // 重复的调用socket的close没有问题, 但不能并发调用close(假设Close接口暴露给用户,是有这种需求的).
if (status_.exchange(kClosed) != kClosed) { // 即便重复调用socket的close是没有问题的, 但是这里也保证Close只能被调用一次.
boost::lock_guard<boost::mutex> guard(socket_mutex_);
boost::system::error_code errcode;
if (socket_->close(errcode)) {
std::cerr << "Close Connection Error" << std::endl;
} else {
std::cerr << "Close Connection Done" << std::endl;
}
}
}
ConnStatus status() { return status_.load(); }
private:
void ReadHandler(const boost::system::error_code& error, std::size_t bytes_transferred) {
if (!error) { // 没有发生错误(包含被取消), 那么发起下一次读取.
// 该函数读到一些数据就会返回, 正好适用于这里的echo逻辑. 如果希望读取指定长度完成前不返回, 使用async_read.
{
boost::lock_guard<boost::mutex> guard(socket_mutex_);
socket_->async_receive(boost::asio::buffer(msgbuf_, sizeof(msgbuf_)), boost::bind(&Connection::ReadHandler, shared_from_this(), _1, _2));
}
//printf("%.*s", (int)bytes_transferred, msgbuf_);
// 这里展示一下如何在多线程asio下正确的使用async_write有序的发送echo, 并且待发送消息队列以便在socket失效时有机会发送消息重发.
EchoMsg(StringPtr(new std::string(msgbuf_, bytes_transferred)));
} else if (error == boost::asio::error::operation_aborted) {
std::cout << "Connection ReadHandler Canceled." << std::endl;
} else {
ConnStatus expected = kConnected;
if (status_.compare_exchange_strong(expected, kError)) {
std::cout << "ReadHandler Error." << std::endl;
}
}
}
void WriteHandler(const boost::system::error_code& error, std::size_t bytes_transferred) {
if (!error) {
boost::lock_guard<boost::mutex> guard(socket_mutex_);
write_queue_.pop_front();
if (write_queue_.size()) {
StringPtr next_msg = write_queue_.front();
// async_write保证数据全部写完回调.
async_write(*socket_, boost::asio::buffer(*next_msg), boost::bind(&Connection::WriteHandler, shared_from_this(), _1, _2));
}
} else if (error == boost::asio::error::operation_aborted) {
std::cout << "Connection WriteHandler Canceled." << std::endl;
} else {
ConnStatus expected = kConnected;
if (status_.compare_exchange_strong(expected, kError)) {
std::cout << "WriteHandler Error." << std::endl;
}
}
}
void EchoMsg(StringPtr msg) {
boost::lock_guard<boost::mutex> guard(socket_mutex_);
write_queue_.push_back(msg);
if (write_queue_.size() == 1) {
async_write(*socket_, boost::asio::buffer(*msg), boost::bind(&Connection::WriteHandler, shared_from_this(), _1, _2));
}
}
std::deque<StringPtr> write_queue_;
boost::mutex socket_mutex_;
boost::atomic<ConnStatus> status_;
char msgbuf_[1024 * 16];
SocketPtr socket_;
}; class EchoServer : public boost::enable_shared_from_this<EchoServer> {
public:
EchoServer(IOServicePtr io_service) : stopped_(false), io_service_(io_service), acceptor_(*io_service) {
}
~EchoServer() {
// 在Stop后主线程释放引用计数, 等待io_service处理完剩余事件后析构, 此时不会再有新连接加入,
// 可以Close掉所有Socket并释放引用计数.
std::cout << __FUNCTION__ << std::endl;
boost::lock_guard<boost::mutex> guard(conn_set_mutex_);
for (ConnSetIter iter = conn_set_.begin(); iter != conn_set_.end(); ++iter) {
(*iter)->Close();
}
}
bool Start(const std::string& host, unsigned short port) {
boost::system::error_code errcode;
boost::asio::ip::address address = boost::asio::ip::address::from_string(host, errcode);
if (errcode) {
return false;
}
if (acceptor_.open(boost::asio::ip::tcp::v4(), errcode)) {
return false;
}
acceptor_.set_option(boost::asio::ip::tcp::acceptor::reuse_address(true));
boost::asio::ip::tcp::endpoint endpoint(address, port);
if (acceptor_.bind(endpoint, errcode) || acceptor_.listen(1024, errcode)) {
return false;
}
SocketPtr socket(new boost::asio::ip::tcp::socket(*io_service_));
acceptor_.async_accept(*socket, boost::bind(&EchoServer::AcceptHandler, shared_from_this(), socket, _1));
return true;
}
void Stop() {
boost::system::error_code errcode;
if (acceptor_.close(errcode)) {
std::cerr << "Close Acceptor Error" << std::endl;
}
stopped_.store(true);
}
private:
void AcceptHandler(SocketPtr socket, const boost::system::error_code& error) { // 没有并发调用
if (error == boost::asio::error::operation_aborted) { // 因Acceptor被关闭而Cancel, 不需要做任何事情.
std::cout << "Accept Canceled" << std::endl;
return; // 用户主动关闭了Server, 因此操作被Cancel
} else if (!error) { // 成功Accept, 创建一个新的Connection.
std::cout << "Accept New Connection" << std::endl;
ConnPtr new_conn(new Connection(socket));
new_conn->Start();
{
boost::lock_guard<boost::mutex> guard(conn_set_mutex_);
conn_set_.insert(new_conn);
}
TimerPtr socket_timer(new boost::asio::deadline_timer(*io_service_));
socket_timer->expires_from_now(boost::posix_time::seconds(1));
socket_timer->async_wait(boost::bind(&EchoServer::CheckSocketStatus, shared_from_this(), new_conn, socket_timer, _1));
} else {
std::cout << "Accept Error" << std::endl;
}
SocketPtr new_socket(new boost::asio::ip::tcp::socket(*io_service_));
acceptor_.async_accept(*new_socket, boost::bind(&EchoServer::AcceptHandler, shared_from_this(), new_socket, _1));
}
void CheckSocketStatus(ConnPtr conn, TimerPtr socket_timer, const boost::system::error_code& error) {
// 1, EchoServer已经被Stop调用, 那么尽快停止timer释放掉对EchoServer的引用计数, 让EchoServer析构结束服务。
// 2, 判断conn->status()==kError则Close连接并从ConnSet中移除.
// 3, 判断conn->status()==kClosed则从ConnSet中移除.(将来用户可以获取SocketPtr并随时调用Close)
// 4, 连接正常, 继续发起下一次timer.
boost::lock_guard<boost::mutex> guard(conn_set_mutex_);
ConnSetIter iter = conn_set_.find(conn);
assert(iter != conn_set_.end());
if (stopped_.load()) {
// case 1
//std::cout << "case 1" << std::endl;
} else if (conn->status() == Connection::kError) { // case 2
//std::cout << "case 2" << std::endl;
conn->Close();
conn_set_.erase(conn);
} else if (conn->status() == Connection::kClosed) {// case 3
//std::cout << "case 3" << std::endl;
conn_set_.erase(conn);
} else {
//std::cout << "case 4" << std::endl; // case 4
socket_timer->expires_from_now(boost::posix_time::seconds(1));
socket_timer->async_wait(boost::bind(&EchoServer::CheckSocketStatus, shared_from_this(), conn, socket_timer, _1));
}
}
typedef std::set<ConnPtr> ConnSet;
typedef ConnSet::iterator ConnSetIter;
boost::atomic<bool> stopped_;
boost::mutex conn_set_mutex_;
ConnSet conn_set_;
IOServicePtr io_service_;
boost::asio::ip::tcp::acceptor acceptor_; // auto-close while destructor.
};
volatile sig_atomic_t g_shutdown_server = 0;
void ShutdownServerHandler(int signo) {
g_shutdown_server = 1;
}
void SetupSignalHandler() {
sigset_t sigset;
sigfillset(&sigset);
sigdelset(&sigset, SIGTERM);
sigdelset(&sigset, SIGINT);
sigprocmask(SIG_SETMASK, &sigset, NULL); struct sigaction act;
memset(&act, 0, sizeof(act));
act.sa_handler = ShutdownServerHandler;
sigaction(SIGINT, &act, NULL);
sigaction(SIGTERM, &act, NULL);
}
void AsioThreadMain(IOServicePtr io_service) {
// 多线程调用这个io_service跑leader-follower模型
// 初始化挂了一个EchoServer的Acceptor在里面, 主线程调用Stop并Reset释放引用后,
// io_service会处理完acceptor剩余事件后释放引用计数从而使echoserver析构, 在echoserver析构中
// 会将所有在线的socket进行close并释放引用计数, 等io_service处理完所有socket的剩余事件后释放引用计数
// 从而使所有socket析构, 最终io_service上将无任何事件, 自动退出线程.
io_service->run();
}
} int main(int argc, char** argv) {
SetupSignalHandler(); IOServicePtr io_service(new boost::asio::io_service()); EchoServerPtr echo_server(new EchoServer(io_service));
if (!echo_server->Start("0.0.0.0", 7566)) {
return -1;
}
boost::thread_group asio_threads;
for (int i = 0; i < 64; ++i) {
asio_threads.create_thread(boost::bind(AsioThreadMain, io_service));
} while (!g_shutdown_server) {
sleep(1);
}
echo_server->Stop(); // 关闭监听器
echo_server.reset(); // 释放引用计数, 让echo_server析构.
asio_threads.join_all(); // 等待asio自然退出
std::cout << "Stopped.. .." << std::endl;
return 0;
}

  如何在多线程leader-follower模式下正确的使用boost::asio。如何在多线程leader-follower模式下正确的使用boost::asio。