LDA(Latent Dirichlet allocation)模型是一种常用而用途广泛地概率主题模型。其实现一般通过Variational inference和Gibbs Samping实现。作者在提出LDA模型时给出了其变分推理的C源码(后续贴出C++改编的类),这里贴出基于Python的第三方模块改写的LDA类及实现。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
#coding:utf-8
import numpy as np
import lda
import lda.datasets
import jieba
import codecs
class LDA_v20161130():
def __init__( self , topics = 2 ):
self .n_topic = topics
self .corpus = None
self .vocab = None
self .ppCountMatrix = None
self .stop_words = [u ',' , u '。' , u '、' , u '(' , u ')' , u '·' , u '!' , u ' ' , u ':' , u '“' , u '”' , u '\n' ]
self .model = None
def loadCorpusFromFile( self , fn):
# 中文分词
f = open (fn, 'r' )
text = f.readlines()
text = r ' ' .join(text)
seg_generator = jieba.cut(text)
seg_list = [i for i in seg_generator if i not in self .stop_words]
seg_list = r ' ' .join(seg_list)
# 切割统计所有出现的词纳入词典
seglist = seg_list.split( " " )
self .vocab = []
for word in seglist:
if (word ! = u ' ' and word not in self .vocab):
self .vocab.append(word)
CountMatrix = []
f.seek( 0 , 0 )
# 统计每个文档中出现的词频
for line in f:
# 置零
count = np.zeros( len ( self .vocab),dtype = np. int )
text = line.strip()
# 但还是要先分词
seg_generator = jieba.cut(text)
seg_list = [i for i in seg_generator if i not in self .stop_words]
seg_list = r ' ' .join(seg_list)
seglist = seg_list.split( " " )
# 查询词典中的词出现的词频
for word in seglist:
if word in self .vocab:
count[ self .vocab.index(word)] + = 1
CountMatrix.append(count)
f.close()
#self.ppCountMatrix = (len(CountMatrix), len(self.vocab))
self .ppCountMatrix = np.array(CountMatrix)
print "load corpus from %s success!" % fn
def setStopWords( self , word_list):
self .stop_words = word_list
def fitModel( self , n_iter = 1500 , _alpha = 0.1 , _eta = 0.01 ):
self .model = lda.LDA(n_topics = self .n_topic, n_iter = n_iter, alpha = _alpha, eta = _eta, random_state = 1 )
self .model.fit( self .ppCountMatrix)
def printTopic_Word( self , n_top_word = 8 ):
for i, topic_dist in enumerate ( self .model.topic_word_):
topic_words = np.array( self .vocab)[np.argsort(topic_dist)][: - (n_top_word + 1 ): - 1 ]
print "Topic:" ,i, "\t" ,
for word in topic_words:
print word,
print
def printDoc_Topic( self ):
for i in range ( len ( self .ppCountMatrix)):
print ( "Doc %d:((top topic:%s) topic distribution:%s)" % (i, self .model.doc_topic_[i].argmax(), self .model.doc_topic_[i]))
def printVocabulary( self ):
print "vocabulary:"
for word in self .vocab:
print word,
print
def saveVocabulary( self , fn):
f = codecs. open (fn, 'w' , 'utf-8' )
for word in self .vocab:
f.write( "%s\n" % word)
f.close()
def saveTopic_Words( self , fn, n_top_word = - 1 ):
if n_top_word = = - 1 :
n_top_word = len ( self .vocab)
f = codecs. open (fn, 'w' , 'utf-8' )
for i, topic_dist in enumerate ( self .model.topic_word_):
topic_words = np.array( self .vocab)[np.argsort(topic_dist)][: - (n_top_word + 1 ): - 1 ]
f.write( "Topic:%d\t" % i)
for word in topic_words:
f.write( "%s " % word)
f.write( "\n" )
f.close()
def saveDoc_Topic( self , fn):
f = codecs. open (fn, 'w' , 'utf-8' )
for i in range ( len ( self .ppCountMatrix)):
f.write( "Doc %d:((top topic:%s) topic distribution:%s)\n" % (i, self .model.doc_topic_[i].argmax(), self .model.doc_topic_[i]))
f.close()
|
算法实现demo:
例如,抓取BBC川普当选的新闻作为语料,输入以下代码:
1
2
3
4
5
6
7
8
9
10
11
12
|
if __name__ = = "__main__" :
_lda = LDA_v20161130(topics = 20 )
stop = [u '!' , u '@' , u '#' , u ',' ,u '.' ,u '/' ,u ';' ,u ' ' ,u '[' ,u ']' ,u '$' ,u '%' ,u '^' ,u '&' ,u '*' ,u '(' ,u ')' ,
u '"' ,u ':' ,u '<' ,u '>' ,u '?' ,u '{' ,u '}' ,u '=' ,u '+' ,u '_' ,u '-' ,u '''''' ]
_lda.setStopWords(stop)
_lda.loadCorpusFromFile(u 'C:\\Users\Administrator\Desktop\\BBC.txt' )
_lda.fitModel(n_iter = 1500 )
_lda.printTopic_Word(n_top_word = 10 )
_lda.printDoc_Topic()
_lda.saveVocabulary(u 'C:\\Users\Administrator\Desktop\\vocab.txt' )
_lda.saveTopic_Words(u 'C:\\Users\Administrator\Desktop\\topic_word.txt' )
_lda.saveDoc_Topic(u 'C:\\Users\Administrator\Desktop\\doc_topic.txt' )
|
因为语料全部为英文,因此这里的stop_words全部设置为英文符号,主题设置20个,迭代1500次。结果显示,文档148篇,词典1347词,总词数4174,在i3的电脑上运行17s。
Topic_words部分输出如下:
Topic: 0
to will and of he be trumps the what policy
Topic: 1 he would in said not no with mr this but
Topic: 2 for or can some whether have change health obamacare insurance
Topic: 3 the to that president as of us also first all
Topic: 4 trump to when with now were republican mr office presidential
Topic: 5 the his trump from uk who president to american house
Topic: 6 a to that was it by issue vote while marriage
Topic: 7 the to of an are they which by could from
Topic: 8 of the states one votes planned won two new clinton
Topic: 9 in us a use for obama law entry new interview
Topic: 10 and on immigration has that there website vetting action given
Doc_Topic部分输出如下:
Doc 0:((top topic:4) topic distribution:[ 0.02972973 0.0027027 0.0027027 0.16486486 0.32702703 0.19189189
0.0027027 0.0027027 0.02972973 0.0027027 0.02972973 0.0027027
0.0027027 0.0027027 0.02972973 0.0027027 0.02972973 0.0027027
0.13783784 0.0027027 ])
Doc 1:((top topic:18) topic distribution:[ 0.21 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.11 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.31 0.21])
Doc 2:((top topic:18) topic distribution:[ 0.02075472 0.00188679 0.03962264 0.00188679 0.00188679 0.00188679
0.00188679 0.15283019 0.00188679 0.02075472 0.00188679 0.24716981
0.00188679 0.07735849 0.00188679 0.00188679 0.00188679 0.00188679
0.41698113 0.00188679])
当然,对于英文语料,需要排除大部分的虚词以及常用无意义词,例如it, this, there, that...在实际操作中,需要合理地设置参数。
换中文语料尝试,采用习大大就卡斯特罗逝世发表的吊唁文章和朴槿惠辞职的新闻。
Topic: 0
的 同志 和 人民 卡斯特罗 菲德尔 古巴 他 了 我
Topic: 1 在 朴槿惠 向 表示 总统 对 将 的 月 国民
Doc 0:((top topic:0) topic distribution:[ 0.91714123 0.08285877])
Doc 1:((top topic:1) topic distribution:[ 0.09200666 0.90799334])
还是存在一些虚词,例如“的”,“和”,“了”,“对”等词的干扰,但是大致来说,两则新闻的主题分布很明显,效果还不赖。
总结
以上就是本文关于Python_LDA实现方法详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:python+mongodb数据抓取详细介绍、Python探索之创建二叉树、Python探索之修改Python搜索路径等,有什么问题可以随时留言,欢迎大家一起交流讨论。感谢朋友们对本站的支持!
原文链接:http://blog.csdn.net/liuph_/article/details/53406609