前言
今天开始接触非关系型数据库的mongoDB,现在将自己做的笔记发出来,供大家参考,也便于自己以后忘记了可以查看。
首先,mongoDB,是一种数据库,但是又区别与mysql,sqlserver、orcle等关系数据库,在优势上面也略高一筹;至于为什么会这么说呢?很简单,我们来举两个例子:
1.在存储上面,非关系型数据库可以更大规模的存储,打个比方,Facebook用的数据库就是非关系型数据库。
2.运用起来更加流畅也是这个数据库的优点,将分布式的特点发挥到极致。
当我查看官方文档的时候,简直要人命,光是一个插入方法都讲了好几条,脑袋都大了,现在我总结一下每一插入方法的特性
1
|
db.collection. insert ()
|
db.collection.insert()
向集合插入一个或多个文档.要想插入一个文档,传递一个文档给该方法;要想插入多个文档,就可以采用该方法。
例如
1
2
3
4
5
6
7
|
db.users. insert (
[
{ name : "bob" , age: 42, status: "A" , },
{ name : "ahn" , age: 22, status: "A" , },
{ name : "xi" , age: 34, status: "D" , }
]
)
|
如果插入成功就会返回
1
|
WriteResult({ "nInserted" : 3 })
|
如果异常情况,那么就会返回如下咯:
1
2
3
4
5
6
7
|
WriteResult({
"nInserted" : 3,
"writeConcernError" : {
"code" : 64,
"errmsg" : "waiting for replication timed out at shard-a"
}
})
|
当我们想插入一条数据的时候,采用insert的方法据比较浪费内存,这个时候,我们久采用插入单个的语法db.collection.insertOne()
向集合插入 单个 文档 document 举个小列子来说明一下。
1
2
3
4
5
6
7
|
db.users.insertOne(
{
name : "sue" ,
age: 19,
status: "P"
}
)
|
有了单个,就肯定会有多个,那么多个又是怎么样的呢?语法都很类似,db.collection.insertMany()
这个语法跟上面没有区别嘛,对不对,当然是错的,你想,如果添加的数据是数组里面嵌套数组,前面两个的方法的性能就大打折扣了,影响数据库的性能。废话少说,列子走一波:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
db.users.insertMany(
[
{
_id: 1,
name : "sue" ,
age: 19,
type: 1,
status: "P" ,
favorites: { artist: "Picasso" , food: "pizza" },
finished: [ 17, 3 ],
badges: [ "blue" , "black" ],
points: [
{ points: 85, bonus: 20 },
{ points: 85, bonus: 10 }
]
},
{
_id: 2,
name : "bob" ,
age: 42,
type: 1,
status: "A" ,
favorites: { artist: "Miro" , food: "meringue" },
finished: [ 11, 25 ],
badges: [ "green" ],
points: [
{ points: 85, bonus: 20 },
{ points: 64, bonus: 12 }
]
},
{
_id: 3,
name : "ahn" ,
age: 22,
type: 2,
status: "A" ,
favorites: { artist: "Cassatt" , food: "cake" },
finished: [ 6 ],
badges: [ "blue" , "Picasso" ],
points: [
{ points: 81, bonus: 8 },
{ points: 55, bonus: 20 }
]
},
{
_id: 4,
name : "xi" ,
age: 34,
type: 2,
status: "D" ,
favorites: { artist: "Chagall" , food: "chocolate" },
finished: [ 5, 11 ],
badges: [ "Picasso" , "black" ],
points: [
{ points: 53, bonus: 15 },
{ points: 51, bonus: 15 }
]
},
{
_id: 5,
name : "xyz" ,
age: 23,
type: 2,
status: "D" ,
favorites: { artist: "Noguchi" , food: "nougat" },
finished: [ 14, 6 ],
badges: [ "orange" ],
points: [
{ points: 71, bonus: 20 }
]
},
{
_id: 6,
name : "abc" ,
age: 43,
type: 1,
status: "A" ,
favorites: { food: "pizza" , artist: "Picasso" },
finished: [ 18, 12 ],
badges: [ "black" , "blue" ],
points: [
{ points: 78, bonus: 8 },
{ points: 57, bonus: 7 }
]
}
]
)
|
注意:insertOne()、insertMany()是3.2版本的语法。
既然增了,就得查找,对吧,查找里面呢也有很多小东西,有许多自己自定义查询。
1、查询全部
1
|
db.users.find( {} ) 等价于db.users.find()
|
2、指定等于条件
一个 query filter document 可以使用 <field>:<value> 表达式指定等于条件以选择所有包含 <field> 字段并且等于特定 <value> 的所有文档:
下面的示例从 user 集合中检索 status 字段值为 “P” 或者 “D” 的所有文档:
1
|
db.users.find( { status: { $ in : [ "P" , "D" ] } } )
|
3、指定 AND 条件
复合查询可以在集合文档的多个字段上指定条件。隐含地,一个逻辑的 AND 连接词会连接复合查询的子句,使得查询选出集合中匹配所有条件的文档。
下面的示例在 users 集合中检索 status 等于 "A"``**并且** ``age 小于 ($lt) 30是所有文档:
1
|
db.users.find( { status: "A" , age: { $lt: 30 } } )
|
4、指定 OR 条件
通过使用 $or 操作符,你可以指定一个使用逻辑 OR 连接词连接各子句的复合查询选择集合中匹配至少一个条件的文档。
下面的示例在 users 集合中检索 status` 等于 "A"**或者**age 小于 ($lt) 30 所有文档:
1
2
3
4
5
|
db.users.find(
{
$ or : [ { status: "A" }, { age: { $lt: 30 } } ]
}
)
|
5、指定 AND 和 OR 条件(可以更加精确的查询)
在下面的示例中,复合查询文档选择集合中status`` 等于 "A" 并且 要么 age 小于 ($lt) 30 要么 type 等于 1 的所有文档:
1
2
3
4
5
6
|
db.users.find(
{
status: "A" ,
$ or : [ { age: { $lt: 30 } }, { type: 1 } ]
}
)
|
6、嵌入文档上的精确匹配
使用{ <field>: <value> }并且 “” 为要匹配文档的查询文档,来指定匹配整个内嵌文档的完全相等条件.(要使)相等条件匹配上内嵌文档需要指定 包括字段顺序的 精确 匹配。
在下面的例子中,查询匹配所有 favorites 字段是以该种顺序只包含 等于 "Picasso"``的 ``artist 和等于 "pizza" 的 food 字段的内嵌文档:
1
|
db.users.find( { favorites: { artist: "Picasso" , food: "pizza" } } )
|
7、嵌入文档中字段上的等于匹配
在下面的例子中,查询使用 dot notation 匹配所有 favorites 字段是包含等于 "Picasso" 的字段 ``artist``(可能还包含其他字段) 的内嵌文档:
1
|
db.users.find( { "favorites.artist" : "Picasso" } )
|
8、数组上的查询
采用一个参数: $elemMatch (该参数是值精确的数组)
下面的例子查询 finished 数组至少包含一个大于 ($gt) 15 并且小于 ($lt) 20 的元素的文档:
1
|
db.users.find( { finished: { $elemMatch: { $gt: 15, $lt: 20 } } } )
|
9、嵌入文档数组
使用数组索引匹配嵌入文档中的字段
在下面的例子中,查询使用 the dot notation 匹配所有 dadges 是第一个元素为”black” 的数组的文档:
1
|
db.users.find( { 'points.0.points' : { $lte: 55 } } )
|
10、不指定数组索引匹配字段
如果你不知道文档在数组中的索引位置,用点号 (.) 将包含数组的字段的名字和内嵌文档的字段的名字连起来。
下面的例子选择出所有 points``数组中至少有一个嵌入文档包含值小于或等于 ``55 的字段 points 的文档:
1
|
db.users.find( { 'points.points' : { $lte: 55 } } )
|
11、指定数组文档的多个查询条件
单个元素满足查询条件
使用 $elemMatch 操作符为数组元素指定复合条件,以查询数组中至少一个元素满足所有指定条件的文档。
下面的例子查询 points 数组有至少一个包含 points 小于等于 70 并且字段 bonus 等于 20 的内嵌文档的文档:
1
|
db.users.find( { points: { $elemMatch: { points: { $lte: 70 }, bonus: 20 } } }
|
12、元素组合满足查询条件
下面的例子查询了 points 数组包含了以某种组合满足查询条件的元素的文档;例如,一个元素满足 points 小于等于 70 的条件并且有另一个元素满足 bonus 等于 20 的条件,或者一个元素同时满足两个条件:
1
|
db.users.find( { "points.points" : { $lte: 70 }, "points.bonus" : 20 } )
|
接下来就是更新咯,老样子跟插入方法差不多,更新就可以看做是插入的一种。
来一段官方文档的话:
如果 db.collection.update()
,db.collection.updateOne()
, db.collection.updateMany()
或者 db.collection.replaceOne()
包含 upsert : true 并且 没有文档匹配指定的过滤器,那么此操作会创建一个新文档并插入它。如果有匹配的文档,那么此操作修改或替换匹配的单个或多个文档。
这个解释在我认为就是在没有该数据的时候就会创建相应的数据,毕竟它是插入的一种特殊方法。
1、db.collection.updateOne():修改单条数据
下面的例子对 users 集合使用 db.collection.updateOne()
方法来更新第一个 根据 过滤条件favorites.artist 等于 “Picasso” 匹配到的文档更新操作:
使用 $set 操作符更新 favorites.food 字段的值为 “pie” 并更新 type 字段的值为 3,
1
2
3
4
5
6
7
|
db.users.updateOne(
{ "favorites.artist" : "Picasso" },
{
$ set : { "favorites.food" : "pie" , type: 3 },
}
)
|
2、db.collection.update()
的用法和db.collection.updateOne()
类似,为了区别一下,我们采用了 { multi: true }这个参数,这样会在你修改之后的数据中有这个参数,表示修改完成。
1
2
3
4
5
6
7
|
db.users. update (
{ "favorites.artist" : "Pisanello" },
{
$ set : { "favorites.food" : "pizza" , type: 0, }
},
{ multi: true }
)
|
3、 db.collection.updateMany(),这个会不会认为是修改很多,当然可以这么理解,但是我更喜欢把他理解成修改多个参数。
下面这个举例就是为了大家看的明白采用了{ upsert: true },它可以清晰的返回你修改后的值
1
2
3
4
5
|
db.inspectors.updateMany(
{ "Sector" : { $gt : 4 }, "inspector" : "R. Coltrane" },
{ $ set : { "Patrolling" : false } },
{ upsert: true }
);
|
4、修改还有一个就是文档替换db.collection.replaceOne
下面的例子对 users 集合使用 db.collection.replaceOne() 方法将通过过滤条件 name 等于 "sue" 匹配到的 **第一个** 文档替换为新文档:
1
2
3
4
|
db.users.replaceOne(
{ name : "abc" },
{ name : "amy" , age: 34, type: 2, status: "P" , favorites: { "artist" : "Dali" , food: "donuts" } }
)
|
走着,撸删除了:
1、删除所有文档db.collection.remove()
这个方法就干脆了,就相当于sql中的删除表结构的delete()
1
|
db.users.remove({})
|
作为另一种选择如下例子使用 db.collection.remove()
从 users 集合中删除所有 status 字段等于 “A” 的文档:
1
|
db.users.remove( { status : "P" } )
|
2、仅删除一个满足条件的文档db.collection.deleteOne()
如下例子使用 db.collection.deleteOne()
删除 第一个 status 字段等于 “A” 的文档:
1
|
db.users.deleteOne( { status: "D" } )
|
3、删除集合中所有文档db.collection.deleteMany()
如下的例子使用 db.collection.deleteMany()
方法从 users 集合中删除了 所有 文档:
1
|
db.users.deleteMany({})
|
以上是通过两天学习官方文达能的总结,下面配上官方文档的地址表示感谢。
https://docs.mongodb.com/manual/reference/method/js-collection/
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对服务器之家的支持。
原文链接:https://www.cnblogs.com/XSdao/p/11339092.html