
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4003
题意:给定一棵n个节点的树,遍历每条数边都需要费用cost,现在给定k个机器人,要求用这个k个机器人遍历整棵树,使得经过的费用和最小,n<=10000.
分析:dp[u][j]表示有j个机器人不回来的最小值,dp[u][0]表示有一个机器人回来的最小值,即没有一个机器停留在那颗子树上。至于为甚么只考虑一个机器人回来的原因是同时派多个机器人下去,如果回来的人越多,走重复路线会越多,耗费越多。
这里的树形dp和以往有点不同,原本树形dp对于每个根节点u的儿子v相当于分组背包里的一组,对于每组里的物品(v的儿子)至多取一个进行dp,这里因为要遍历完所有边,所以对于每组的物品必须取一个。
总而言之,假设根节点u有x个子节点,dp[u][j]=min(dp[v1][num1]+dp[v2][num2]+...+dp[vx][numx])
如何分配numk(0<=numk<=j)让num1+num2+...+numx=j使得dp[u][j]值最小。这里对于每个子节点numk枚举0~j枚举一遍就好。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 1000000007
#define inf 0x3f3f3f3f
#define N 10010
#define FILL(a,b) (memset(a,b,sizeof(a)))
using namespace std;
struct edge
{
int v,w,next;
edge(){}
edge(int v,int w,int next):v(v),w(w),next(next){}
}e[*N];
int head[N],tot,n,m,s;
int dp[N][];
void addedge(int u,int v,int w)
{
e[tot]=edge(v,w,head[u]);
head[u]=tot++;
}
void dfs(int u,int fa)
{ for(int i=head[u];~i;i=e[i].next)
{
int v=e[i].v,w=e[i].w;
if(v==fa)continue;
dfs(v,u);
for(int j=m;j>=;j--)
{
dp[u][j]+=dp[v][]+*w;//派一个人下去遍历完后再回来,保证选了一个
for(int k=;k<=j;k++)//枚举派多个下去,选出最优值
dp[u][j]=min(dp[u][j],dp[u][j-k]+dp[v][k]+w*k);
}
dp[u][]+=dp[v][]+*w;
}
}
int main()
{
int u,v,w,sum;
while(scanf("%d%d%d",&n,&s,&m)>)
{
FILL(head,-);FILL(dp,);tot=;
for(int i=;i<n;i++)
{
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);
addedge(v,u,w);
}
dfs(s,-);
printf("%d\n",dp[s][m]);
}
}