Python最大的优点之一就是语法简洁,好的代码就像伪代码一样,干净、整洁、一目了然。要写出 Pythonic(优雅的、地道的、整洁的)代码,需要多看多学大牛们写的代码,github 上有很多非常优秀的源代码值得阅读,比如:requests、flask、tornado,下面列举一些常见的Pythonic写法。
0. 程序必须先让人读懂,然后才能让计算机执行。
“Programs must be written for people to read, and only incidentally for machines to execute.”
1. 交换赋值
1
2
3
4
5
6
7
|
##不推荐
temp = a
a = b
b = a
##推荐
a, b = b, a # 先生成一个元组(tuple)对象,然后unpack
|
2. Unpacking
1
2
3
4
5
6
7
8
9
10
11
|
##不推荐
l = [ 'David' , 'Pythonista' , '+1-514-555-1234' ]
first_name = l[ 0 ]
last_name = l[ 1 ]
phone_number = l[ 2 ]
##推荐
l = [ 'David' , 'Pythonista' , '+1-514-555-1234' ]
first_name, last_name, phone_number = l
# Python 3 Only
first, * middle, last = another_list
|
3. 使用操作符in
1
2
3
4
5
6
7
|
##不推荐
if fruit = = "apple" or fruit = = "orange" or fruit = = "berry" :
# 多次判断
##推荐
if fruit in [ "apple" , "orange" , "berry" ]:
# 使用 in 更加简洁
|
4. 字符串操作
1
2
3
4
5
6
7
8
9
10
|
##不推荐
colors = [ 'red' , 'blue' , 'green' , 'yellow' ]
result = ''
for s in colors:
result + = s # 每次赋值都丢弃以前的字符串对象, 生成一个新对象
##推荐
colors = [ 'red' , 'blue' , 'green' , 'yellow' ]
result = ''.join(colors) # 没有额外的内存分配
|
5. 字典键值列表
1
2
3
4
5
6
7
8
9
10
|
##不推荐
for key in my_dict.keys():
# my_dict[key] ...
##推荐
for key in my_dict:
# my_dict[key] ...
# 只有当循环中需要更改key值的情况下,我们需要使用 my_dict.keys()
# 生成静态的键值列表。
|
6. 字典键值判断
1
2
3
4
5
6
7
|
##不推荐
if my_dict.has_key(key):
# ...do something with d[key]
##推荐
if key in my_dict:
# ...do something with d[key]
|
7. 字典 get 和 setdefault 方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
##不推荐
navs = {}
for (portfolio, equity, position) in data:
if portfolio not in navs:
navs[portfolio] = 0
navs[portfolio] + = position * prices[equity]
##推荐
navs = {}
for (portfolio, equity, position) in data:
# 使用 get 方法
navs[portfolio] = navs.get(portfolio, 0 ) + position * prices[equity]
# 或者使用 setdefault 方法
navs.setdefault(portfolio, 0 )
navs[portfolio] + = position * prices[equity]
|
8. 判断真伪
1
2
3
4
5
6
7
8
9
10
11
12
13
|
##不推荐
if x = = True :
# ....
if len (items) ! = 0 :
# ...
if items ! = []:
# ...
##推荐
if x:
# ....
if items:
# ...
|
9. 遍历列表以及索引
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
##不推荐
items = 'zero one two three' .split()
# method 1
i = 0
for item in items:
print i, item
i + = 1
# method 2
for i in range ( len (items)):
print i, items[i]
##推荐
items = 'zero one two three' .split()
for i, item in enumerate (items):
print i, item
|
10. 列表推导
1
2
3
4
5
6
7
8
|
##不推荐
new_list = []
for item in a_list:
if condition(item):
new_list.append(fn(item))
##推荐
new_list = [fn(item) for item in a_list if condition(item)]
|
11. 列表推导-嵌套
1
2
3
4
5
6
7
8
9
10
11
|
##不推荐
for sub_list in nested_list:
if list_condition(sub_list):
for item in sub_list:
if item_condition(item):
# do something...
##推荐
gen = (item for sl in nested_list if list_condition(sl) \
for item in sl if item_condition(item))
for item in gen:
# do something...
|
12. 循环嵌套
1
2
3
4
5
6
7
8
9
10
|
##不推荐
for x in x_list:
for y in y_list:
for z in z_list:
# do something for x & y
##推荐
from itertools import product
for x, y, z in product(x_list, y_list, z_list):
# do something for x, y, z
|
13. 尽量使用生成器代替列表
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
##不推荐
def my_range(n):
i = 0
result = []
while i < n:
result.append(fn(i))
i + = 1
return result # 返回列表
##推荐
def my_range(n):
i = 0
result = []
while i < n:
yield fn(i) # 使用生成器代替列表
i + = 1
* 尽量用生成器代替列表,除非必须用到列表特有的函数。
|
14. 中间结果尽量使用imap/ifilter代替map/filter
1
2
3
4
5
6
7
|
##不推荐
reduce (rf, filter (ff, map (mf, a_list)))
##推荐
from itertools import ifilter, imap
reduce (rf, ifilter(ff, imap(mf, a_list)))
* lazy evaluation 会带来更高的内存使用效率,特别是当处理大数据操作的时候。
|
15. 使用any/all函数
1
2
3
4
5
6
7
8
9
10
11
12
|
##不推荐
found = False
for item in a_list:
if condition(item):
found = True
break
if found:
# do something if found...
##推荐
if any (condition(item) for item in a_list):
# do something if found...
|
16. 属性(property)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
##不推荐
class Clock( object ):
def __init__( self ):
self .__hour = 1
def setHour( self , hour):
if 25 > hour > 0 : self .__hour = hour
else : raise BadHourException
def getHour( self ):
return self .__hour
##推荐
class Clock( object ):
def __init__( self ):
self .__hour = 1
def __setHour( self , hour):
if 25 > hour > 0 : self .__hour = hour
else : raise BadHourException
def __getHour( self ):
return self .__hour
hour = property (__getHour, __setHour)
|
17. 使用 with 处理文件打开
1
2
3
4
5
6
7
8
9
10
11
12
|
##不推荐
f = open ( "some_file.txt" )
try :
data = f.read()
# 其他文件操作..
finally :
f.close()
##推荐
with open ( "some_file.txt" ) as f:
data = f.read()
# 其他文件操作...
|
18. 使用 with 忽视异常(仅限Python 3)
1
2
3
4
5
6
7
8
9
10
11
|
##不推荐
try :
os.remove( "somefile.txt" )
except OSError:
pass
##推荐
from contextlib import ignored # Python 3 only
with ignored(OSError):
os.remove( "somefile.txt" )
|
19. 使用 with 处理加锁
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
##不推荐
import threading
lock = threading.Lock()
lock.acquire()
try :
# 互斥操作...
finally :
lock.release()
##推荐
import threading
lock = threading.Lock()
with lock:
# 互斥操作...
|
以上就是python19个值得学习的编程技巧的详细内容,更多关于python 编程技巧的资料请关注服务器之家其它相关文章!
原文链接:https://cloud.tencent.com/developer/article/1361631