![[leetcode]29. Divide Two Integers两整数相除 [leetcode]29. Divide Two Integers两整数相除](https://image.shishitao.com:8440/aHR0cHM6Ly9ia3FzaW1nLmlrYWZhbi5jb20vdXBsb2FkL2NoYXRncHQtcy5wbmc%2FIQ%3D%3D.png?!?w=700&webp=1)
Given two integers dividend
and divisor
, divide two integers without using multiplication, division and mod operator.
Return the quotient after dividing dividend
by divisor
.
The integer division should truncate toward zero.
Example 1:
Input: dividend = 10, divisor = 3
Output: 3
Example 2:
Input: dividend = 7, divisor = -3
Output: -2
Note:
- Both dividend and divisor will be 32-bit signed integers.
- The divisor will never be 0.
- Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [− 231, 231 − 1]. For the purpose of this problem, assume that your function returns 231 − 1 when the division result overflows.
题意:
不准乘除,不准膜。
Solution1:用加减和位运算。
乘法可以通过不断加法来获得
故,除法可以通过不断减法来获得
碎碎念:
数学渣对这种没有算法含量,又要大量数学sense的题,好抓狂。
发挥文科生优势。背诵吧!!
code
class Solution {
public int divide(int dividend, int divisor) {
// corner case
if(dividend == 0) return 0; // 当 dividend = INT_MIN,divisor = -1时,结果会溢出
if (dividend == Integer.MIN_VALUE) {
if (divisor == -1) return Integer.MAX_VALUE;
else if (divisor < 0)
return 1 + divide( dividend - divisor, divisor);
else
return - 1 + divide( dividend + divisor, divisor);
} if(divisor == Integer.MIN_VALUE){
return dividend == divisor ? 1 : 0;
} int a = dividend > 0 ? dividend : -dividend;
int b = divisor > 0 ? divisor : -divisor; int result = 0;
while (a >= b) {
int c = b;
for (int i = 0; a >= c;) {
a -= c;
result += 1 << i;
if (c < Integer.MAX_VALUE / 2) { // prevent overflow
++i;
c <<= 1;
}
}
} return ((dividend^divisor) >> 31) != 0 ? (-result) : (result);
}
}