
开运算 (Opening)
原理摘自:http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/opening_closing_hats/opening_closing_hats.html
-
开运算是通过先对图像腐蚀再膨胀实现的。
可以排除小团块物体(如果物体较背景明亮)
-
请看以下。左图是原图像,右图是採用开运算转换之后的结果图。
观察发现字母拐弯处的白色空间消失。
-
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvaF93bHlmdw==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
闭运算(Closing)
-
闭运算是通过先对图像膨胀再腐蚀实现的。
-
可以排除小型黑洞(黑色区域)。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvaF93bHlmdw==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
形态梯度(Morphological Gradient)
-
膨胀图与腐蚀图之差
-
可以保留物体的边缘轮廓,例如以下所看到的:
顶帽(Top Hat)
-
原图像与开运算结果图之差
黑帽(Black Hat)
-
闭运算结果图与原图像之差
- 代码:
// ConsoleApplication3_6_23.cpp : Defines the entry point for the console application.
// #include "stdafx.h"
#include<opencv2/opencv.hpp>
#include<iostream>
using namespace std;
using namespace cv; Mat src,dst; int pro_elem = 0;
int pro_size = 0;
int pro_operator = 0; const int max_elem = 2;
const int max_size = 21;
const int max_operator = 4; char* windowName = "Demo";
void Image_pro(int,void*); int _tmain(int argc, _TCHAR* argv[])
{
src = imread("hwl.jpg");
if(!src.data)
return -1; namedWindow(windowName,CV_WINDOW_AUTOSIZE); createTrackbar("Operator:\n 0:opening-1:closing-2:gradient-3:Top Hat-4: Black Hat",
windowName,&pro_operator,max_operator,Image_pro); createTrackbar("Element:\n 0:Rect-1:Cross-2:Ellipse",
windowName,&pro_elem,max_elem,Image_pro); createTrackbar("Kernel size:\n 2n+1",
windowName,&pro_size,max_size,Image_pro); Image_pro(0,0);
waitKey(0);
return 0;
} void Image_pro(int,void*)
{
int operation = pro_operator + 2;
Mat element = getStructuringElement(pro_elem,Size(2*pro_size+1,2*pro_size+1),
Point(pro_size,pro_size));
morphologyEx(src,dst,operation,element);
imshow(windowName,dst);
}
版权声明:本文博主原创文章。博客,未经同意,不得转载。