【CF553E】Kyoya and Train
题意:有一张$n$个点到$m$条边的有向图,经过第i条边要花$c_i$元钱,经过第i条边有$p_{i,k}$的概率要耗时k分钟。你想从1走到n,但是如果整个过程耗时超过了$t$,则需要额外花费$f$元。求从1走到n的期望最小花费。
$n\le 50,m\le 100,t\le 20000,k\le 1$
题解:我们先用最短路预处理出如果已经超时了,从1走到n的最小花费。剩下的考虑DP。
用f[i][j]表示在i时刻到达了j,想走到n的最小花费。则对于第i条边$(a,b)$,我们有:
$f[a][j]=min(f[a][j],\sum f[b][j+k]p_{i,k})$
发现只有后面的时间会影响前面的时间,所以我们对时间进行cdq分治。再令g[i][j]表示在j时刻经过第i条边,想走到n的最小花费,那么对于边(a,b),我们可以用f[b]更新g[b],在用g[b]和f[a]取min即可。g[b]的转移如下:
$g[i][j]=\sum f[b][j+k]p_{i,k}$
你会发现这是一个卷积的形式,上fft即可。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#define pi acos(-1.0)
using namespace std;
const int maxn=20010;
typedef double db;
struct cp
{
db x,y;
cp() {}
cp(db a,db b) {x=a,y=b;}
cp operator + (const cp &a) const {return cp(x+a.x,y+a.y);}
cp operator - (const cp &a) const {return cp(x-a.x,y-a.y);}
cp operator * (const cp &a) const {return cp(x*a.x-y*a.y,x*a.y+y*a.x);}
}l1[100010],l2[100010];
int head[60],next[110],to[110],pa[110],pb[110],pc[110],vis[60],dis[60];
db p[110][20010],F,f[60][20010],g[110][20010],sp[110][20010];
int n,m,T;
inline void FFT(cp *a,int len,int f)
{
int i,j,k,h;
cp t;
for(i=k=0;i<len;i++)
{
if(i>k) swap(a[i],a[k]);
for(j=len>>1;(k^=j)<j;j>>=1);
}
for(h=2;h<=len;h<<=1)
{
cp wn(cos(2*pi*f/h),sin(2*pi*f/h));
for(i=0;i<len;i+=h)
{
cp w(1,0);
for(j=i;j<i+h/2;j++) t=w*a[j+h/2],a[j+h/2]=a[j]-t,a[j]=a[j]+t,w=w*wn;
}
}
if(f==-1) for(i=0;i<len;i++) a[i].x/=len;
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
void solve(int l,int r)
{
if(l==r)
{
for(int i=1;i<n;i++) f[i][l]=1e9;
for(int i=1;i<=m;i++)
{
g[i][l]+=sp[i][T-l+1]*(dis[pb[i]]+F);
f[pa[i]][l]=min(f[pa[i]][l],g[i][l]+pc[i]);
}
return ;
}
int mid=(l+r)>>1,i,j,len;
for(len=1;len<r-l+r-mid;len<<=1);
solve(mid+1,r);
for(j=1;j<=m;j++)
{
memset(l1,0,sizeof(l1[0])*len),memset(l2,0,sizeof(l2[0])*len);
for(i=1;i<=r-l;i++) l1[r-l-i].x=p[j][i];
for(i=mid+1;i<=r;i++) l2[i-mid-1].x=f[pb[j]][i];
FFT(l1,len,1),FFT(l2,len,1);
for(i=0;i<len;i++) l1[i]=l1[i]*l2[i];
FFT(l1,len,-1);
for(i=0;i<mid-l+1;i++) g[j][l+i]+=l1[r-mid-1+i].x;
}
solve(l,mid);
}
int main()
{
//freopen("cf553E.in","r",stdin);
n=rd(),m=rd(),T=rd(),F=rd();
int i,j;
for(i=1;i<=m;i++)
{
pa[i]=rd(),pb[i]=rd(),pc[i]=rd();
for(j=1;j<=T;j++) p[i][j]=rd()*0.00001;
for(j=T;j;j--) sp[i][j]=sp[i][j+1]+p[i][j];
}
memset(dis,0x3f,sizeof(dis));
dis[n]=0;
for(i=1;i<=n;i++)
{
int k=0;
for(j=1;j<=n;j++) if(!vis[j]&&dis[j]<dis[k]) k=j;
vis[k]=1;
for(j=1;j<=m;j++) if(pb[j]==k) dis[pa[j]]=min(dis[pa[j]],dis[k]+pc[j]);
}
solve(0,T);
printf("%.10lf",f[1][0]);
return 0;
}