使用python实现两数之和的画解算法

时间:2021-10-17 03:32:48

题目描述

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。

你可以按任意顺序返回答案。

示例 1:

输入:nums = [2,7,11,15], target = 9

输出:[0,1]

解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。

示例 2:

输入:nums = [3,2,4], target = 6

输出:[1,2]

示例 3:

输入:nums = [3,3], target = 6

输出:[0,1]

问题分析

1.暴力求解

两层循环,外层循环枚举(或称作选中一个标杆),内层循环从枚举值之后开始遍历,计算两数的和是否等于target。

如果找到了两个数,那么返回这两个数的下标。

for(int i = 0; i < n - 1; ++i) {
    for(int j = i + 1; j < n; ++j ) {
        if nums[i] + nums[j] == target
        ...
    }
}

暴力求解的算法时间复杂度为指数级,也就是O(n^2)

分析暴力求解,我们发现存在重复搜索的情况,也就是对数组中的部分数据搜索了多次。

那如何只对数组中的数据搜索1次(或常数级),然后求解呢?

我们知道,寻找一个数是否存在,最快的方法是通过hash表,在O(1)的时间复杂度之内就可以判断是否存在某个数。

2.哈希表求解

可对数组遍历一次,然后将数据存入hash表,然后再遍历一次数组

查找 target - currentdata 是否存在hash表中,如果存在,那么我们就寻找到了两个数。

题目要求我们返回数组的下标,那么我们的hash表的key是数组元素的值,value是下标。

  • 这种方法在最坏的情况下,对数组遍历了2次,也就是算法的时间复杂度是O(2n),去掉前导系数是O(n),虽然是相比暴力求解,算法的时间复杂度降低了,但是还有优化的空间。
  • 在遍历数组并将数据放入hash表的同时,我们也可以find(target - currentdata)是否存在,如果存在那么就找到了满足条件的两个数。

find(9-4), 存在那返回这两个数的下标,如果不存在,那么将 4 放入hash表。

使用python实现两数之和的画解算法


find(9-6), 存在那返回这两个数的下标,如果不存在,那么将 6 放入hash表。

使用python实现两数之和的画解算法

在遍历到元素5的时候,我们find(9-5),找到了这两个数。

使用python实现两数之和的画解算法

动画演示下这个过程

使用python实现两数之和的画解算法

代码实现

class Solution:
    def twoSum(self, nums: List[int], target: int) -> List[int]:
        hashtable = dict()
        for i, num in enumerate(nums):
            # ② map中查找是否有 target - curvalue的数据
            if target - num in hashtable:
                return [hashtable[target - num], i]
            # ① 数组中的每个数放入map中
            hashtable[nums[i]] = i
        return []

以上就是使用python实现两数之和的画解算法的详细内容,更多关于python实现两数之和的画解算法的资料请关注服务器之家其它相关文章!

原文链接:https://blog.csdn.net/weixin_39032019/article/details/119834699