Python笔记 #21# DHNN

时间:2023-03-09 06:01:32
Python笔记 #21# DHNN

离散型hopfield神经网络。参考自http://web.cs.ucla.edu/~rosen/161/notes/hopfield.html实现的草稿版本:

# http://web.cs.ucla.edu/~rosen/161/notes/hopfield.html

attractors = np.array([[0, 1, 1, 0, 1], [1, 0, 1, 0, 1]])
print('attractors:\n', attractors) weight_matrix = np.zeros((5, 5))
print('weight_matrix:\n', weight_matrix)
# 第一个向量表示第一个节点到各个节点的权值 # 初始化网络,权值是对称的,例如w12 = w21,而w11 w22都是0
# for i in range(len(weight_matrix)):
def reflect_about_the_diagonal(matrix):
# 将矩阵上三角翻转拷贝到下三角
matrix += matrix.T - np.diag(matrix.diagonal()) for attractor in attractors:
temp_matrix = np.zeros((5, 5))
for i in range(0, 4):
for j in range(i + 1, 5):
temp_matrix[i, j] = (2 * attractor[i] - 1) * (2 * attractor[j] - 1)
weight_matrix += temp_matrix reflect_about_the_diagonal(weight_matrix)
print('weight_matrix:\n', weight_matrix) # print(weight_matrix[2].dot(attractors[0])) # 类似于bp里的预测,som里的map
def xxxx(input_vector):
vector = input_vector.copy() stable_state = False random_order = np.arange(len(attractors[0])) while not stable_state:
# 生成一个随机序列,以随机的顺序更新节点
np.random.shuffle(random_order)
stable_state = True
for i in random_order:
original_value = vector[i]
vector[i] = weight_matrix[i].dot(vector)
if (vector[i] >= 0):
vector[i] = 1
else:
vector[i] = 0
if (vector[i] != original_value):
print(i, "change ", original_value, '->', vector[i])
stable_state = False return vector x = [1, 1, 1, 1, 1]
print('test:', x, '->', xxxx(np.array(x)))