464. Can I Win

时间:2021-12-17 00:14:15

https://leetcode.com/problems/can-i-win/description/

In the "100 game," two players take turns adding, to a running total, any integer from 1..10. The player who first causes the running total to reach or exceed 100 wins.

What if we change the game so that players cannot re-use integers?

For example, two players might take turns drawing from a common pool of numbers of 1..15 without replacement until they reach a total >= 100.

Given an integer maxChoosableInteger and another integer desiredTotal, determine if the first player to move can force a win, assuming both players play optimally.

You can always assume that maxChoosableInteger will not be larger than 20 and desiredTotal will not be larger than 300.

Example

Input:
maxChoosableInteger = 10
desiredTotal = 11 Output:
false Explanation:
No matter which integer the first player choose, the first player will lose.
The first player can choose an integer from 1 up to 10.
If the first player choose 1, the second player can only choose integers from 2 up to 10.
The second player will win by choosing 10 and get a total = 11, which is >= desiredTotal.
Same with other integers chosen by the first player, the second player will always win.

Sol:

After solving several "Game Playing" questions in leetcode, I find them to be pretty similar. Most of them can be solved using the top-down DP approach, which "brute-forcely" simulates every possible state of the game.

The key part for the top-down dp strategy is that we need to avoid repeatedly solving sub-problems. Instead, we should use some strategy to "remember" the outcome of sub-problems. Then when we see them again, we instantly know their result. By doing this, we can always reduce time complexity from exponential to polynomial.
(EDIT: Thanks for @billbirdh for pointing out the mistake here. For this problem, by applying the memo, we at most compute for every subproblem once, and there are O(2^n) subproblems, so the complexity is O(2^n) after memorization. (Without memo, time complexity should be like O(n!))

For this question, the key part is: what is the state of the game? Intuitively, to uniquely determine the result of any state, we need to know:

  1. The unchosen numbers
  2. The remaining desiredTotal to reach

A second thought reveals that 1) and 2) are actually related because we can always get the 2) by deducting the sum of chosen numbers from original desiredTotal.

Then the problem becomes how to describe the state using 1).

In my solution, I use a boolean array to denote which numbers have been chosen, and then a question comes to mind, if we want to use a Hashmap to remember the outcome of sub-problems, can we just use Map<boolean[], Boolean> ? Obviously we cannot, because the if we use boolean[] as a key, the reference to boolean[] won't reveal the actual content in boolean[].

Since in the problem statement, it says maxChoosableInteger will not be larger than 20, which means the length of our boolean[] arraywill be less than 20. Then we can use an Integer to represent this boolean[] array. How?

Say the boolean[] is {false, false, true, true, false}, then we can transfer it to an Integer with binary representation as 00110. Since Integer is a perfect choice to be the key of HashMap, then we now can "memorize" the sub-problems using Map<Integer, Boolean>.

The rest part of the solution is just simulating the game process using the top-down dp.

class Solution {

    Map<Integer, Boolean> map;
boolean[] used; public boolean canIWin(int maxChoosableInteger, int desiredTotal) { // Brute force. Game playing problems are all about brute force basically... int sum = (1+maxChoosableInteger) * maxChoosableInteger/2;
if (sum < desiredTotal) return false;
if (desiredTotal <= 0) return true; map = new HashMap();
used = new boolean[maxChoosableInteger+1];
return helper(desiredTotal); } public boolean helper(int desiredTotal){
if(desiredTotal <= 0) return false;
int key = format(used);
if (!map.containsKey(key)){
// try every unchosen number as next step
for (int i = 1; i < used.length; i++){
if(!used[i]){
used[i] = true;
// check if this leads to a win (i.e. the other player lose) if (!helper(desiredTotal - i)){
map.put(key, true);
used[i] = false;
return true;
} used[i] = false;
} } map.put(key, false);
} return map.get(key);
} // transfer boolean[] to an Integer public int format(boolean[] used){
int num = 0;
for(boolean b: used){
// i would never think of using bit manipulation on this....
num <<= 1;
if(b) num |= 1;
} return num;
} }

464. Can I Win的更多相关文章

  1. 状态压缩 - LeetCode &num;464 Can I Win

    动态规划是一种top-down求解模式,关键在于分解和求解子问题,然后根据子问题的解不断向上递推,得出最终解 因此dp涉及到保存每个计算过的子问题的解,这样当遇到同样的子问题时就不用继续向下求解而直接 ...

  2. &lbrack;LeetCode&rsqb; 464&period; Can I Win 我能赢吗

    In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...

  3. LeetCode 464&period; Can I Win

    In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...

  4. 464 Can I Win 我能赢吗

    详见:https://leetcode.com/problems/can-i-win/description/ C++: class Solution { public: bool canIWin(i ...

  5. &lbrack;leetcode&rsqb; 464&period; Can I Win &lpar;Medium&rpar;

    原题链接 两个人依次从1~maxNum中选取数字(不可重复选取同一个),累和.当一方选取数字累和后结果大于等于给定的目标数字,则此人胜利. 题目给一个maxNum和targetNum,要求判断先手能否 ...

  6. LeetCode All in One 题目讲解汇总&lpar;持续更新中&period;&period;&period;&rpar;

    终于将LeetCode的免费题刷完了,真是漫长的第一遍啊,估计很多题都忘的差不多了,这次开个题目汇总贴,并附上每道题目的解题连接,方便之后查阅吧~ 477 Total Hamming Distance ...

  7. leetcode bugfree note

    463. Island Perimeterhttps://leetcode.com/problems/island-perimeter/就是逐一遍历所有的cell,用分离的cell总的的边数减去重叠的 ...

  8. LeetCode All in One题解汇总(持续更新中&period;&period;&period;)

    突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...

  9. All LeetCode Questions List 题目汇总

    All LeetCode Questions List(Part of Answers, still updating) 题目汇总及部分答案(持续更新中) Leetcode problems clas ...

随机推荐

  1. 【51Nod 1616】【算法马拉松 19B】最小集合

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1616 这道题主要是查询一个数是不是原有集合的一个子集的所有数的gcd. ...

  2. 样式PC和手机页面

    /*媒体查询--当页面大于1200px时*/ @media (min-width: 1200px) { } /*在922和1199像素之间的屏幕里,中等屏幕*/ @media (min-width: ...

  3. mybatis学习之路

    MyBatis 是支持普通SQL查询.存储过程和高级映射的优秀持久层框架. MyBatis消除了几乎所有的JDBC代码和参数的手工设置以及对结果集的检索封装. MyBatis可以使用简单的XML或注解 ...

  4. IO流的练习5 —— 读取文件中的字符串,排序后写入另一文件中

    需求:已知s.txt文件中有这样的一个字符串:“hcexfgijkamdnoqrzstuvwybpl” 请编写程序读取数据内容,把数据排序后写入ss.txt中. 分析: A:读取文件中的数据 B:把数 ...

  5. echo二次开发 ecshop 函数列表

    lib_time.php (时间函数) gmtime() P: 获得当前格林威治时间的时间戳 /$0 server_timezone() P: 获得服务器的时区 /$0 local_mktime($h ...

  6. storm,hbase和storm-kafka-0&period;8-plus兼容性问题

    1  org.slf4j.impl.StaticLoggerBinder.SINGLETON错误 方案: 确保slf4j-api-1.5.6.jar 和slf4j-log4j12-1.5.6.jar ...

  7. JQuery UI的拖拽功能

    JQuery UI是JQuery官方支持的WebUI 代码库,包含底层交互.动画.特效等API,并且封装了一些Web小部件(Widget).同时,JQuery UI继承了jquery的插件支持,有大量 ...

  8. &lbrack;LeetCode&rsqb; 21&period; 合并两个有序链表

    题目链接:https://leetcode-cn.com/problems/merge-two-sorted-lists/ 题目描述: 将两个有序链表合并为一个新的有序链表并返回.新链表是通过拼接给定 ...

  9. 网页title左边显示网页的logo图标

    打开某一个网页会在浏览器的标签栏处显示该网页的标题和图标,当网页被添加到收藏夹或者书签中时也会出现网页的图标,怎么在网页title左边显示网页的logo图标呢? 方法1: 找一个或者作一个ico文件, ...

  10. Linux系统运维笔记&lpar;四&rpar;&comma;CentOS 6&period;4安装Nginx

    Linux系统运维笔记(四),CentOS 6.4安装Nginx 1,安装编译工具及库文件 yum -y install make zlib zlib-devel gcc-c++ libtool op ...