P4774 [NOI2018]屠龙勇士

时间:2022-03-02 00:39:17

P4774 [NOI2018]屠龙勇士


先平衡树跑出打每条龙的atk t[]

然后每条龙有\(xt \equiv a[i](\text{mod }p[i])\)

就是\(xt+kp[i]=a[i]\)

求出一个满足条件的\(x_0\),通解是\(x=x_0+k*\text{gcd}(t,p[i])\)

就是\(x \equiv x_0 (\text{mod }\text{gcd}(t,p[i]))\)

然后就有n个这样的式子,用excrt,合并方程

excrt懒得写了

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define il inline
#define vd void
#define int long long
il int gi(){
int x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
int a[100010],p[100010],ATK[100010],Atk[100010],t[100010];
std::multiset<int>ST;
il int mult(int a,int b,int mod){
if(llabs(a)<llabs(b))std::swap(a,b);
if(b<0)b=-b,a=-a;
int ret=0;
while(b){
if(b&1)ret=(ret+a)%mod;
a=(a<<1)%mod;b>>=1;
}
return (ret+mod)%mod;
}
il int gcd(int a,int b){return b?gcd(b,a%b):a;}
il int exgcd(int a,int b,int&x,int&y){
if(b==0){x=1,y=0;return a;}
else{
int ret=exgcd(b,a%b,y,x);
y-=(a/b)*x;
return ret;
}
}
il int inv(int a,int b){
int x,y;exgcd(a,b,x,y);
while(x<0)x+=b;
return x;
}
int M[100010],Mod[100010];
main(){
int T=gi(),n,m;
while(T--){
n=gi(),m=gi();
for(int i=1;i<=n;++i)a[i]=gi();
for(int i=1;i<=n;++i)p[i]=gi();
for(int i=1;i<=n;++i)ATK[i]=gi();
for(int i=1;i<=m;++i)Atk[i]=gi(),ST.insert(Atk[i]);
for(int i=1;i<=n;++i){
std::multiset<int>::iterator it=ST.upper_bound(a[i]);
if(it==ST.begin())t[i]=*it;
else --it,t[i]=*it;
ST.erase(it);
ST.insert(ATK[i]);
}
ST.clear();
bool flg=1;
for(int i=1;i<=n;++i)if(p[i]!=1)flg=0;
if(flg){
int ans=0;
for(int i=1;i<=n;++i)ans=std::max(ans,(a[i]+t[i]-1)/t[i]);
printf("%lld\n",ans);
continue;
}
#define GG(a) {printf("%d\n",a);goto ed;}
for(int i=1;i<=n;++i){
int x,y;
int g=exgcd(t[i],p[i],x,y);
if(a[i]%g)GG(-1);
int P=p[i]/g;
x=(x%P+P)%P;
M[i]=mult(x,a[i]/g,P),Mod[i]=P;
}
{
int lM=M[1],lMod=Mod[1];
for(int i=2;i<=n;++i){
int m1=lMod,m2=Mod[i],c1=lM,c2=M[i],g=gcd(m1,m2);
if((c2-c1)%g)GG(-2);
int m3,c3;
m3=(m1/g*m2);
c3=mult(mult(inv(m1/g,m2/g),(c2-c1)/g,m3)%(m2/g),m1,m3)+c1;
c3=(c3%m3+m3)%m3;
lM=c3,lMod=m3;
}
printf("%lld\n",lM);
}
ed:;
}
return 0;
}

P4774 [NOI2018]屠龙勇士的更多相关文章

  1. &lbrack;洛谷P4774&rsqb; &lbrack;NOI2018&rsqb;屠龙勇士

    洛谷题目链接:[NOI2018]屠龙勇士 因为markdown复制过来有点炸格式,所以看题目请戳上面. 题解: 因为杀死一条龙的条件是在攻击\(x\)次,龙恢复\(y\)次血量\((y\in N^{* ...

  2. 洛谷 P4774 &lbrack;NOI2018&rsqb; 屠龙勇士

    链接:P4774 前言: 交了18遍最后发现是多组数据没清空/ll 题意: 其实就是个扩中. 分析过程: 首先发现根据题目描述的选择剑的方式,每条龙对应的剑都是固定的,有查询前驱,后继(在该数不存在前 ...

  3. 洛谷P4774 &lbrack;NOI2018&rsqb;屠龙勇士 &lbrack;扩欧,中国剩余定理&rsqb;

    传送门 思路 首先可以发现打每条龙的攻击值显然是可以提前算出来的,拿multiset模拟一下即可. 一般情况 可以搞出这么一些式子: \[ atk_i\times x=a_i(\text{mod}\ ...

  4. luogu P4774 &lbrack;NOI2018&rsqb;屠龙勇士

    传送门 这题真的是送温暖啊qwq,而且最重要的是yyb巨佬在Day2前几天正好学了crt,还写了博客 然而我都没仔细看,结果我就同步赛打铁了QAQ 我们可以先根据题意,使用set维护,求出每次的攻击力 ...

  5. (伪)再扩展中国剩余定理(洛谷P4774 &lbrack;NOI2018&rsqb;屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

  6. BZOJ5418&lbrack;Noi2018&rsqb;屠龙勇士——exgcd&plus;扩展CRT&plus;set

    题目链接: [Noi2018]屠龙勇士 题目大意:有$n$条龙和初始$m$个武器,每个武器有一个攻击力$t_{i}$,每条龙有一个初始血量$a_{i}$和一个回复值$p_{i}$(即只要血量为负数就一 ...

  7. BZOJ&lowbar;5418&lowbar;&lbrack;Noi2018&rsqb;屠龙勇士&lowbar;exgcd&plus;excrt

    BZOJ_5418_[Noi2018]屠龙勇士_exgcd+excrt Description www.lydsy.com/JudgeOnline/upload/noi2018day2.pdf 每次用 ...

  8. uoj396 &lbrack;NOI2018&rsqb;屠龙勇士

    [NOI2018]屠龙勇士 描述 小 D 最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号 1∼n 顺序杀掉 n 条巨龙,每条巨龙拥有一个初始的生命值 ai .同时每条巨龙拥有恢复能 ...

  9. Luogu P4774 &sol; LOJ2721 【&lbrack;NOI2018&rsqb;屠龙勇士】

    真是个简单坑题...++ 前置: exgcd,exCRT,STL-multiset 读完题不难发现,攻击每条龙用的剑都是可以确定的,可以用multiset求.攻击最少显然应该对于每一条龙都操作一次,即 ...

随机推荐

  1. SQL Server的各种表

    以下表格简便易懂 请认真仔细斟酌! 字符串函数: 字符串函数用于对字符串数据进行处理,并返回一个字符串或者数字. 函数名 描述 例子 CHARINDEX 用来寻找一个指定的字符串在另一个字符串中的起始 ...

  2. android 中的几种目录

    1. context.getExternalFilesDir()     ==> /sdcard/Android/data/<package_name>/files/ 一般放一些长时 ...

  3. linux 安装python,pip&comma;

    Linux下python升级步骤 http://www.cnblogs.com/lanxuezaipiao/archive/2012/10/21/2732864.html 在 https://www. ...

  4. windows系统——mysql自动定时备份数据库的最佳方法

    网上有很多关于window下Mysql自动备份的方法,可是真的能用的也没有几个,有些说的还非常的复杂,难以操作. 我们都知道mssql本身就自带了计划任务可以用来自动备份,可是mysql咱们要怎么样自 ...

  5. Android中特殊图形的生成样例

    import android.graphics.Bitmap; import android.graphics.Canvas; import android.graphics.Color; impor ...

  6. Yii2 解决2006 MySQL server has gone away问题

    Yii2 解决2006 MySQL server has gone away问题 Yii2版本 2.0.15.1 php后台任务经常包含多段sql,如果php脚本执行时间较长,或者sql执行时间较长, ...

  7. Good Bye 2018 &lpar;A~F&comma; H&rpar;

    目录 Codeforces 1091 A.New Year and the Christmas Ornament B.New Year and the Treasure Geolocation C.N ...

  8. cdnbest获取,删除,增加,修改域名列表,高级设置api示例

    <?php $uid = 28; $vhost = 'asdfw'; $token = getToken($uid, $vhost); print_r($token); //获取token fu ...

  9. 设置linux的console为串口【转】

    转自:http://blog.chinaunix.net/uid-27717694-id-4074219.html 以Grub2为例:1. 修改文件/etc/default/grub   #显示启动菜 ...

  10. SNMP学习笔记之SNMPv3报文认证和加密

    下面主要的内容就是SNMPv3的加密和认证过程! USM的定义为实现以下功能: 鉴别 数据加密 密钥管理 时钟同步化 避免延时和重播攻击 1.UsmSecurityParameters(安全参数) 安 ...