We are playing the Guess Game. The game is as follows:
I pick a number from 1 to n. You have to guess which number I picked.
Every time you guess wrong, I'll tell you whether the number I picked is higher or lower.
However, when you guess a particular number x, and you guess wrong, you pay $x. You win the game when you guess the number I picked.
Example:
n = 10, I pick 8. First round: You guess 5, I tell you that it's higher. You pay $5.
Second round: You guess 7, I tell you that it's higher. You pay $7.
Third round: You guess 9, I tell you that it's lower. You pay $9. Game over. 8 is the number I picked. You end up paying $5 + $7 + $9 = $21.
Given a particular n ≥ 1, find out how much money you need to have to guarantee a win.
Hint:
- The best strategy to play the game is to minimize the maximum loss you could possibly face. Another strategy is to minimize the expected loss. Here, we are interested in thefirst scenario.
- Take a small example (n = 3). What do you end up paying in the worst case?
- Check out this article if you're still stuck.
- The purely recursive implementation of minimax would be worthless for even a small n. You MUST use dynamic programming.
- As a follow-up, how would you modify your code to solve the problem of minimizing the expected loss, instead of the worst-case loss?
Credits:
Special thanks to @agave and @StefanPochmann for adding this problem and creating all test cases.
此题是之前那道 Guess Number Higher or Lower 的拓展,难度增加了不少,根据题目中的提示,这道题需要用到 Minimax 极小化极大算法,关于这个算法可以参见这篇讲解,并且题目中还说明了要用 DP 来做,需要建立一个二维的 dp 数组,其中 dp[i][j] 表示从数字i到j之间猜中任意一个数字最少需要花费的钱数,那么需要遍历每一段区间 [j, i],维护一个全局最小值 global_min 变量,然后遍历该区间中的每一个数字,计算局部最大值 local_max = k + max(dp[j][k - 1], dp[k + 1][i]),这个正好是将该区间在每一个位置都分为两段,然后取当前位置的花费加上左右两段中较大的花费之和为局部最大值,为啥要取两者之间的较大值呢,因为要 cover 所有的情况,就得取最坏的情况。然后更新全局最小值,最后在更新 dp[j][i] 的时候看j和i是否是相邻的,相邻的话赋为j,否则赋为 global_min。这里为啥又要取较小值呢,因为 dp 数组是求的 [j, i] 范围中的最低 cost,比如只有两个数字1和2,那么肯定是猜1的 cost 低,是不有点晕,没关系,博主继续来绕你。如果只有一个数字,那么不用猜,cost 为0。如果有两个数字,比如1和2,猜1,即使不对,cost 也比猜2要低。如果有三个数字 1,2,3,那么就先猜2,根据对方的反馈,就可以确定正确的数字,所以 cost 最低为2。如果有四个数字 1,2,3,4,那么情况就有点复杂了,策略是用k来遍历所有的数字,然后再根据k分成的左右两个区间,取其中的较大 cost 加上k。
当k为1时,左区间为空,所以 cost 为0,而右区间 2,3,4,根据之前的分析应该取3,所以整个 cost 就是 1+3=4。
当k为2时,左区间为1,cost 为0,右区间为 3,4,cost 为3,整个 cost 就是 2+3=5。
当k为3时,左区间为 1,2,cost 为1,右区间为4,cost 为0,整个 cost 就是 3+1=4。
当k为4时,左区间 1,2,3,cost 为2,右区间为空,cost 为0,整个 cost 就是 4+2=6。
综上k的所有情况,此时应该取整体 cost 最小的,即4,为最后的答案,这就是极小化极大算法,参见代码如下:
解法一:
class Solution {
public:
int getMoneyAmount(int n) {
vector<vector<int>> dp(n + , vector<int>(n + , ));
for (int i = ; i <= n; ++i) {
for (int j = i - ; j > ; --j) {
int global_min = INT_MAX;
for (int k = j + ; k < i; ++k) {
int local_max = k + max(dp[j][k - ], dp[k + ][i]);
global_min = min(global_min, local_max);
}
dp[j][i] = j + == i ? j : global_min;
}
}
return dp[][n];
}
};
下面这种是递归解法,建立了记忆数组 memo,减少了重复计算,提高了运行效率,核心思想跟上面的解法相同,参见代码如下:
解法二:
class Solution {
public:
int getMoneyAmount(int n) {
vector<vector<int>> memo(n + , vector<int>(n + , ));
return helper(, n, memo);
}
int helper(int start, int end, vector<vector<int>>& memo) {
if (start >= end) return ;
if (memo[start][end] > ) return memo[start][end];
int res = INT_MAX;
for (int k = start; k <= end; ++k) {
int t = k + max(helper(start, k - , memo), helper(k + , end, memo));
res = min(res, t);
}
return memo[start][end] = res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/375
类似题目:
参考资料:
https://leetcode.com/problems/guess-number-higher-or-lower-ii/
https://leetcode.com/problems/guess-number-higher-or-lower-ii/discuss/84787/Java-DP-solution
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Guess Number Higher or Lower II 猜数字大小之二的更多相关文章
-
[LeetCode] 375. Guess Number Higher or Lower II 猜数字大小之二
We are playing the Guess Game. The game is as follows: I pick a number from 1 to n. You have to gues ...
-
[LeetCode] 375. Guess Number Higher or Lower II 猜数字大小 II
We are playing the Guess Game. The game is as follows: I pick a number from 1 to n. You have to gues ...
-
375 Guess Number Higher or Lower II 猜数字大小 II
我们正在玩一个猜数游戏,游戏规则如下:我从 1 到 n 之间选择一个数字,你来猜我选了哪个数字.每次你猜错了,我都会告诉你,我选的数字比你的大了或者小了.然而,当你猜了数字 x 并且猜错了的时候,你需 ...
-
Leetcode: Guess Number Higher or Lower II
e are playing the Guess Game. The game is as follows: I pick a number from 1 to n. You have to guess ...
-
不一样的猜数字游戏 — leetcode 375. Guess Number Higher or Lower II
好久没切 leetcode 的题了,静下心来切了道,这道题比较有意思,和大家分享下. 我把它叫做 "不一样的猜数字游戏",我们先来看看传统的猜数字游戏,Guess Number H ...
-
[LeetCode] Guess Number Higher or Lower 猜数字大小
We are playing the Guess Game. The game is as follows: I pick a number from 1 to n. You have to gues ...
-
【LeetCode】375. Guess Number Higher or Lower II 解题报告(Python)
[LeetCode]375. Guess Number Higher or Lower II 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://f ...
-
LC 375. Guess Number Higher or Lower II
We are playing the Guess Game. The game is as follows: I pick a number from 1 to n. You have to gues ...
-
leetcode 374. Guess Number Higher or Lower 、375. Guess Number Higher or Lower II
374. Guess Number Higher or Lower 二分查找就好 // Forward declaration of guess API. // @param num, your gu ...
随机推荐
-
BOM 浏览器对象模型
总结自JavaSript高级编程
-
sass2:
ass学习笔记2 今天介绍sass在重用代码时最具威力的两个功能.一个是嵌套(Nesting),一个混合(Mixin). 我们在写CSS通过需要多个后代选择器组合到一起才能定位到目标元素上,而这定义过 ...
-
[vivado系列]设置Xilinx Documention Navigator
版本:2015.1 ------------------------------------------ 这是一个很便利FPGA工程师的文档整理收纳神器. 针对个人使用上的习惯,进行简单的2项设置. ...
-
改变对update的做法
以前都是 先根据id或者其他条件查出来 再根据查出来的结果 进行修改 再update提交 这里可以改所有的字段 现在是做法 是直接new 一个 Do或者Vo 把要改变的值 先填充进去 然后再去 ...
-
PHP操作SQLITE
一直以来.我们操作SQLITE,都是基于PHP默认的SQLITE操作模块. 今天介绍一个能够操作SQLITE2,和SQLITE3的PHP类,此为我封装的. <? php abstract cla ...
-
android学习Gallery和ImageSwitch的使用
Gallery组件被称之为画廊,是一种横向浏览图片的列表,在使用android API 19 Platform 时会发现Gallery被画上了横线,表明谷歌已经不推荐使用该组件了, * @deprec ...
-
2017-2018-2 20165234 实验四《Android程序设计》实验报告
一.实验报告封面 课程:Java程序设计 班级:1652 姓名:刘津甫 学号:20165234 指导教师:娄嘉鹏 实验日期:2018年5月14日 实验时间:13:45 - 3:25 ...
-
存储过程DT参数
public static void TableValuedToDB(DataTable dt, string storedProcName, string TypeName) { using (Sq ...
-
Kubernetes基础:查看状态、管理服务
目标 了解Kubernetes Pod 了解Kubernetes Node 学习如何调试部署问题 了解如何通过Service暴露应用 Kubernetes Pods 在Kubernetes中创建一个D ...
-
将数据处理逻辑集中到一处进行管理,逐步实现真正有效的 MVC 分层结构
将数据处理逻辑集中到一处进行管理,逐步实现真正有效的 MVC 分层结构.