pytorch做标准化利用transforms.Normalize(mean_vals, std_vals),其中常用数据集的均值方差有:
1
2
3
4
5
6
|
if 'coco' in args.dataset:
mean_vals = [ 0.471 , 0.448 , 0.408 ]
std_vals = [ 0.234 , 0.239 , 0.242 ]
elif 'imagenet' in args.dataset:
mean_vals = [ 0.485 , 0.456 , 0.406 ]
std_vals = [ 0.229 , 0.224 , 0.225 ]
|
计算自己数据集图像像素的均值方差:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
import numpy as np
import cv2
import random
# calculate means and std
train_txt_path = './train_val_list.txt'
img_h, img_w = 32 , 32
imgs = np.zeros([img_w, img_h, 3 , 1 ])
means, stdevs = [], []
with open (train_txt_path, 'r' ) as f:
lines = f.readlines()
random.shuffle(lines) # shuffle , 随机挑选图片
for i in tqdm_notebook( range (CNum)):
img_path = os.path.join( './train' , lines[i].rstrip().split()[ 0 ])
img = cv2.imread(img_path)
img = cv2.resize(img, (img_h, img_w))
img = img[:, :, :, np.newaxis]
imgs = np.concatenate((imgs, img), axis = 3 )
# print(i)
imgs = imgs.astype(np.float32) / 255.
for i in tqdm_notebook( range ( 3 )):
pixels = imgs[:,:,i,:].ravel() # 拉成一行
means.append(np.mean(pixels))
stdevs.append(np.std(pixels))
# cv2 读取的图像格式为BGR,PIL/Skimage读取到的都是RGB不用转
means.reverse() # BGR --> RGB
stdevs.reverse()
print ( "normMean = {}" . format (means))
print ( "normStd = {}" . format (stdevs))
print ( 'transforms.Normalize(normMean = {}, normStd = {})' . format (means, stdevs))
|
以上这篇计算pytorch标准化(Normalize)所需要数据集的均值和方差实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/weixin_38533896/article/details/85951903