将数据从长格式转换为宽格式,并使用多个度量列。

时间:2021-12-07 23:19:55

I am having trouble figuring out the most elegant and flexible way to switch data from long format to wide format when I have more than one measure variable I want to bring along.

当我有多个度量变量时,我很难找到最优雅和灵活的方法来将数据从长格式转换为宽格式。

For example, here's a simple data frame in long format. ID is the subject, TIME is a time variable, and X and Y are measurements made of ID at TIME:

例如,这里有一个长格式的简单数据帧。ID是主语,时间是时间变量,X和Y是对ID在时间上的测量:

> my.df <- data.frame(ID=rep(c("A","B","C"), 5), TIME=rep(1:5, each=3), X=1:15, Y=16:30)
> my.df

   ID TIME  X  Y
1   A    1  1 16
2   B    1  2 17
3   C    1  3 18
4   A    2  4 19
5   B    2  5 20
6   C    2  6 21
7   A    3  7 22
8   B    3  8 23
9   C    3  9 24
10  A    4 10 25
11  B    4 11 26
12  C    4 12 27
13  A    5 13 28
14  B    5 14 29
15  C    5 15 30

If I just wanted to turn the values of TIME into column headers containing the include X, I know I can use cast from the reshape package (or dcast from reshape2):

如果我只是想将时间值转换为包含include X的列标题,我知道我可以使用reshape2中的cast:

> cast(my.df, ID ~ TIME, value="X")
  ID 1 2 3  4  5
1  A 1 4 7 10 13
2  B 2 5 8 11 14
3  C 3 6 9 12 15

But what I really want to do is also bring along Y as another measure variable, and have the column names reflect both the measure variable name and the time value:

但我真正想做的是把Y作为另一个度量变量,让列名同时反映度量变量名和时间值:

  ID X_1 X_2 X_3  X_4 X_5 Y_1 Y_2 Y_3 Y_4 Y_5
1  A   1   4   7   10  13  16  19  22  25  28
2  B   2   5   8   11  14  17  20  23  26  29
3  C   3   6   9   12  15  18  21  24  27  30

(FWIW, I don't really care if all the X's are first followed by the Y's, or if they are interleaved as X_1, Y_1, X_2, Y_2, etc.)

(FWIW,我不在乎所有的X都是Y的后面,或者它们是交叉的X_1、Y_1、X_2、Y_2等等)

I can get close to this by cast-ing the long data twice and merging the results, though the column names need some work, and I would need to tweak it if I needed to add a 3rd or 4th variable in addition to X and Y:

我可以通过两次插入长数据并合并结果来接近这一点,尽管列名需要做一些工作,如果需要在X和Y之外添加第三或第四个变量,我需要对其进行调整:

merge(
cast(my.df, ID ~ TIME, value="X"),
cast(my.df, ID ~ TIME, value="Y"),
by="ID", suffixes=c("_X","_Y")
)

Seems like some combination of functions in reshape2 and/or plyr should be able to do this more elegantly that my attempt, as well as handling multiple measure variables more cleanly. Something like cast(my.df, ID ~ TIME, value=c("X","Y")), which isn't valid. But I haven't been able to figure it out.

似乎reshape2和/或plyr中的一些功能组合应该能够更优雅地完成这一操作,同时更干净地处理多个度量变量。像(我。df, ID ~ TIME, value=c(“X”,“Y”),这是无效的。但我还没弄明白。

Can any R-wizards help me out? Thanks.

有r -wizard可以帮助我吗?谢谢。

4 个解决方案

#1


14  

In order to handle multiple variables like you want, you need to melt the data you have before casting it.

为了像您希望的那样处理多个变量,您需要在转换数据之前对数据进行熔融。

library("reshape2")

dcast(melt(my.df, id.vars=c("ID", "TIME")), ID~variable+TIME)

which gives

这给了

  ID X_1 X_2 X_3 X_4 X_5 Y_1 Y_2 Y_3 Y_4 Y_5
1  A   1   4   7  10  13  16  19  22  25  28
2  B   2   5   8  11  14  17  20  23  26  29
3  C   3   6   9  12  15  18  21  24  27  30

EDIT based on comment:

编辑基于评论:

The data frame

的数据帧

num.id = 10 
num.time=10 
my.df <- data.frame(ID=rep(LETTERS[1:num.id], num.time), 
                    TIME=rep(1:num.time, each=num.id), 
                    X=1:(num.id*num.time), 
                    Y=(num.id*num.time)+1:(2*length(1:(num.id*num.time))))

gives a different result (all entries are 2) because the ID/TIME combination does not indicate a unique row. In fact, there are two rows with each ID/TIME combinations. reshape2 assumes a single value for each possible combination of the variables and will apply a summary function to create a single variable is there are multiple entries. That is why there is the warning

给出一个不同的结果(所有条目都是2),因为ID/时间组合并不表示唯一的行。实际上,每个ID/时间组合有两行。reshape2假设每个可能的变量组合都有一个值,如果有多个条目,它会应用一个摘要函数来创建一个单一的变量。这就是为什么会有这样的警告

Aggregation function missing: defaulting to length

You can get something that works if you add another variable which breaks that redundancy.

如果你添加了另一个破坏冗余的变量,你就可以得到有用的东西。

my.df$cycle <- rep(1:2, each=num.id*num.time)
dcast(melt(my.df, id.vars=c("cycle", "ID", "TIME")), cycle+ID~variable+TIME)

This works because cycle/ID/time now uniquely defines a row in my.df.

这是因为循环/ID/时间现在惟一地定义了my.df中的一行。

#2


15  

   reshape(my.df,
           idvar = "ID",
           timevar = "TIME",
           direction = "wide")

gives

给了

  ID X.1 Y.1 X.2 Y.2 X.3 Y.3 X.4 Y.4 X.5 Y.5
1  A   1  16   4  19   7  22  10  25  13  28
2  B   2  17   5  20   8  23  11  26  14  29
3  C   3  18   6  21   9  24  12  27  15  30

#3


11  

Using the data.table_1.9.5, this can be done without the melt as it can handle multiple value.var columns. You can install it from here

使用data.table_1.9.5,这可以在没有融化的情况下完成,因为它可以处理多个值。var列。你可以从这里安装

 library(data.table)
 dcast(setDT(my.df), ID~TIME, value.var=c('X', 'Y'))
 #   ID 1_X 2_X 3_X 4_X 5_X 1_Y 2_Y 3_Y 4_Y 5_Y
 #1:  A   1   4   7  10  13  16  19  22  25  28
 #2:  B   2   5   8  11  14  17  20  23  26  29
 #3:  C   3   6   9  12  15  18  21  24  27  30

#4


5  

Here's a solution with the tidyr package, which has essentially replaced reshape and reshape2. As with those two packages, the strategy it to make the dataset longer first, and then wider.

这是tidyr包的一个解决方案,它实质上已经取代了“重塑”和“重塑”2。和这两个包一样,它的策略是使数据集更早,然后更宽。

library(magrittr); requireNamespace("tidyr"); requireNamespace("dplyr")
my.df %>% 
  tidyr::gather_(key="variable", value="value", c("X", "Y")) %>%  # Make it even longer.
  dplyr::mutate(                                                  # Create the spread key.
    time_by_variable   = paste0(variable, "_", TIME)
  ) %>% 
  dplyr::select(ID, time_by_variable, value) %>%                  # Retain these three.
  tidyr::spread(key=time_by_variable, value=value)                # Spread/widen.

After the tidyr::gather() call, the intermediate dataset is:

在tidyr::gather()调用后,中间数据集为:

ID TIME variable value
1   A    1        X     1
2   B    1        X     2
3   C    1        X     3
...
28  A    5        Y    28
29  B    5        Y    29
30  C    5        Y    30

The eventual result is:

最终的结果是:

  ID X_1 X_2 X_3 X_4 X_5 Y_1 Y_2 Y_3 Y_4 Y_5
1  A   1   4   7  10  13  16  19  22  25  28
2  B   2   5   8  11  14  17  20  23  26  29
3  C   3   6   9  12  15  18  21  24  27  30

tidyr::unite() is an alternative, suggested by @JWilliman. This is functionally equivalent to the dplyr::mutate() and dplyr::select() combination above, when the remove parameter is true (which is the default).

unite()是另一种选择,由@JWilliman建议。这在功能上等同于上面的dplyr::mutate()和dplyr:::select()组合,当remove参数为true(默认)时。

If you're not accustomed to this type of manipulation, the tidyr::unite() may be a small obstacle because it's one more function you have to learn & remember. However, it's benefits include (a) more concise code (ie, four lines are replaced by one) and (b) fewer places to repeat variable names (ie, you don't have to repeat/modify variables in the dplyr::select() clause).

如果您不习惯这种操作,那么tidyr::unite()可能是一个小障碍,因为它是您必须学习和记住的另一个功能。但是,它的好处包括(a)更简洁的代码(即,四行被一行替换为一行)和(b)重复变量名的地方更少(即,不必在dplyr:::select()子句中重复/修改变量)。

my.df %>% 
  tidyr::gather_(key="variable", value="value", c("X", "Y")) %>%  # Make it even longer.
  tidyr::unite("time_by_variable", variable, TIME, remove=T) %>%  # Create the spread key `time_by_variable` while simultaneously dropping `variable` and `TIME`.
  tidyr::spread(key=time_by_variable, value=value)                # Spread/widen.

#1


14  

In order to handle multiple variables like you want, you need to melt the data you have before casting it.

为了像您希望的那样处理多个变量,您需要在转换数据之前对数据进行熔融。

library("reshape2")

dcast(melt(my.df, id.vars=c("ID", "TIME")), ID~variable+TIME)

which gives

这给了

  ID X_1 X_2 X_3 X_4 X_5 Y_1 Y_2 Y_3 Y_4 Y_5
1  A   1   4   7  10  13  16  19  22  25  28
2  B   2   5   8  11  14  17  20  23  26  29
3  C   3   6   9  12  15  18  21  24  27  30

EDIT based on comment:

编辑基于评论:

The data frame

的数据帧

num.id = 10 
num.time=10 
my.df <- data.frame(ID=rep(LETTERS[1:num.id], num.time), 
                    TIME=rep(1:num.time, each=num.id), 
                    X=1:(num.id*num.time), 
                    Y=(num.id*num.time)+1:(2*length(1:(num.id*num.time))))

gives a different result (all entries are 2) because the ID/TIME combination does not indicate a unique row. In fact, there are two rows with each ID/TIME combinations. reshape2 assumes a single value for each possible combination of the variables and will apply a summary function to create a single variable is there are multiple entries. That is why there is the warning

给出一个不同的结果(所有条目都是2),因为ID/时间组合并不表示唯一的行。实际上,每个ID/时间组合有两行。reshape2假设每个可能的变量组合都有一个值,如果有多个条目,它会应用一个摘要函数来创建一个单一的变量。这就是为什么会有这样的警告

Aggregation function missing: defaulting to length

You can get something that works if you add another variable which breaks that redundancy.

如果你添加了另一个破坏冗余的变量,你就可以得到有用的东西。

my.df$cycle <- rep(1:2, each=num.id*num.time)
dcast(melt(my.df, id.vars=c("cycle", "ID", "TIME")), cycle+ID~variable+TIME)

This works because cycle/ID/time now uniquely defines a row in my.df.

这是因为循环/ID/时间现在惟一地定义了my.df中的一行。

#2


15  

   reshape(my.df,
           idvar = "ID",
           timevar = "TIME",
           direction = "wide")

gives

给了

  ID X.1 Y.1 X.2 Y.2 X.3 Y.3 X.4 Y.4 X.5 Y.5
1  A   1  16   4  19   7  22  10  25  13  28
2  B   2  17   5  20   8  23  11  26  14  29
3  C   3  18   6  21   9  24  12  27  15  30

#3


11  

Using the data.table_1.9.5, this can be done without the melt as it can handle multiple value.var columns. You can install it from here

使用data.table_1.9.5,这可以在没有融化的情况下完成,因为它可以处理多个值。var列。你可以从这里安装

 library(data.table)
 dcast(setDT(my.df), ID~TIME, value.var=c('X', 'Y'))
 #   ID 1_X 2_X 3_X 4_X 5_X 1_Y 2_Y 3_Y 4_Y 5_Y
 #1:  A   1   4   7  10  13  16  19  22  25  28
 #2:  B   2   5   8  11  14  17  20  23  26  29
 #3:  C   3   6   9  12  15  18  21  24  27  30

#4


5  

Here's a solution with the tidyr package, which has essentially replaced reshape and reshape2. As with those two packages, the strategy it to make the dataset longer first, and then wider.

这是tidyr包的一个解决方案,它实质上已经取代了“重塑”和“重塑”2。和这两个包一样,它的策略是使数据集更早,然后更宽。

library(magrittr); requireNamespace("tidyr"); requireNamespace("dplyr")
my.df %>% 
  tidyr::gather_(key="variable", value="value", c("X", "Y")) %>%  # Make it even longer.
  dplyr::mutate(                                                  # Create the spread key.
    time_by_variable   = paste0(variable, "_", TIME)
  ) %>% 
  dplyr::select(ID, time_by_variable, value) %>%                  # Retain these three.
  tidyr::spread(key=time_by_variable, value=value)                # Spread/widen.

After the tidyr::gather() call, the intermediate dataset is:

在tidyr::gather()调用后,中间数据集为:

ID TIME variable value
1   A    1        X     1
2   B    1        X     2
3   C    1        X     3
...
28  A    5        Y    28
29  B    5        Y    29
30  C    5        Y    30

The eventual result is:

最终的结果是:

  ID X_1 X_2 X_3 X_4 X_5 Y_1 Y_2 Y_3 Y_4 Y_5
1  A   1   4   7  10  13  16  19  22  25  28
2  B   2   5   8  11  14  17  20  23  26  29
3  C   3   6   9  12  15  18  21  24  27  30

tidyr::unite() is an alternative, suggested by @JWilliman. This is functionally equivalent to the dplyr::mutate() and dplyr::select() combination above, when the remove parameter is true (which is the default).

unite()是另一种选择,由@JWilliman建议。这在功能上等同于上面的dplyr::mutate()和dplyr:::select()组合,当remove参数为true(默认)时。

If you're not accustomed to this type of manipulation, the tidyr::unite() may be a small obstacle because it's one more function you have to learn & remember. However, it's benefits include (a) more concise code (ie, four lines are replaced by one) and (b) fewer places to repeat variable names (ie, you don't have to repeat/modify variables in the dplyr::select() clause).

如果您不习惯这种操作,那么tidyr::unite()可能是一个小障碍,因为它是您必须学习和记住的另一个功能。但是,它的好处包括(a)更简洁的代码(即,四行被一行替换为一行)和(b)重复变量名的地方更少(即,不必在dplyr:::select()子句中重复/修改变量)。

my.df %>% 
  tidyr::gather_(key="variable", value="value", c("X", "Y")) %>%  # Make it even longer.
  tidyr::unite("time_by_variable", variable, TIME, remove=T) %>%  # Create the spread key `time_by_variable` while simultaneously dropping `variable` and `TIME`.
  tidyr::spread(key=time_by_variable, value=value)                # Spread/widen.