# train_net.py
#!/usr/bin/env python # --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# -------------------------------------------------------- """Train a Fast R-CNN network on a region of interest database.""" import _init_paths
from fast_rcnn.train import get_training_roidb, train_net
from fast_rcnn.config import cfg, cfg_from_file, cfg_from_list, get_output_dir
from datasets.factory import get_imdb
import datasets.imdb
import caffe
import argparse
import pprint
import numpy as np
import sys def parse_args():
# 运行时命令行参数
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Train a Fast R-CNN network')
parser.add_argument('--gpu', dest='gpu_id',
help='GPU device id to use [0]',
default=0, type=int)
parser.add_argument('--solver', dest='solver',
help='solver prototxt',
default=None, type=str)
parser.add_argument('--iters', dest='max_iters',
help='number of iterations to train',
default=40000, type=int)
parser.add_argument('--weights', dest='pretrained_model',
help='initialize with pretrained model weights',
default=None, type=str)
parser.add_argument('--cfg', dest='cfg_file',
help='optional config file',
default=None, type=str)
parser.add_argument('--imdb', dest='imdb_name',
help='dataset to train on',
default='voc_2007_trainval', type=str)
parser.add_argument('--rand', dest='randomize',
help='randomize (do not use a fixed seed)',
action='store_true')
parser.add_argument('--set', dest='set_cfgs',
help='set config keys', default=None,
nargs=argparse.REMAINDER) if len(sys.argv) == 1:
parser.print_help()
sys.exit(1) args = parser.parse_args()
return args def combined_roidb(imdb_names):
# 融合roidb,roidb来自于数据集(实验可能用到多个),所以需要combine多个数据集的roidb
#
def get_roidb(imdb_name):
imdb = get_imdb(imdb_name)
print 'Loaded dataset `{:s}` for training'.format(imdb.name)
# 设置proposal方法,这里是selective search(config.py)
imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD)
print 'Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD)
# 得到用于训练的roidb,定义在train.py,进行了水平翻转,以及为原始roidb添加了一些说明性的属性
roidb = get_training_roidb(imdb)
return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')]
roidb = roidbs[0]
# 这里进行combine roidb
if len(roidbs) > 1:
for r in roidbs[1:]:
roidb.extend(r)
imdb = datasets.imdb.imdb(imdb_names)
else:
# get_imdb方法定义在dataset/factory.py,通过名字得到imdb
imdb = get_imdb(imdb_names)
return imdb, roidb if __name__ == '__main__':
args = parse_args() print('Called with args:')
print(args)
#定义在config.py,见py-faster-rcnn代码阅读2-config.py if args.cfg_file is not None:
cfg_from_file(args.cfg_file)
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs) cfg.GPU_ID = args.gpu_id print('Using config:')
pprint.pprint(cfg) if not args.randomize:
# fix the random seeds (numpy and caffe) for reproducibility
np.random.seed(cfg.RNG_SEED)
caffe.set_random_seed(cfg.RNG_SEED) # set up caffe
caffe.set_mode_gpu()
caffe.set_device(args.gpu_id) imdb, roidb = combined_roidb(args.imdb_name)
print '{:d} roidb entries'.format(len(roidb)) output_dir = get_output_dir(imdb)
print 'Output will be saved to `{:s}`'.format(output_dir)
#定义在train.py
train_net(args.solver, roidb, output_dir,
pretrained_model=args.pretrained_model,
max_iters=args.max_iters)
# train.py """Train a Fast R-CNN network.""" import caffe
from fast_rcnn.config import cfg
import roi_data_layer.roidb as rdl_roidb
from utils.timer import Timer
import numpy as np
import os from caffe.proto import caffe_pb2
import google.protobuf as pb2 class SolverWrapper(object):
# 对caffe solver的简单封装,封装允许我们控制snapshot过程,用于去除归一化学习到的bb回归权重
"""A simple wrapper around Caffe's solver.
This wrapper gives us control over the snapshotting process, which we
use to unnormalize the learned bounding-box regression weights.
""" def __init__(self, solver_prototxt, roidb, output_dir,
pretrained_model=None):
"""Initialize the SolverWrapper."""
self.output_dir = output_dir if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
# RPN can only use precomputed normalization because there are no
# fixed statistics to compute a priori assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED
# 求bb回归器的target,返回box的均值和标准差
if cfg.TRAIN.BBOX_REG:
print 'Computing bounding-box regression targets...'
self.bbox_means, self.bbox_stds = \
rdl_roidb.add_bbox_regression_targets(roidb)
print 'done'
# solver,copy预训练模型的权重,set roidb
self.solver = caffe.SGDSolver(solver_prototxt)
if pretrained_model is not None:
print ('Loading pretrained model '
'weights from {:s}').format(pretrained_model)
self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter()
with open(solver_prototxt, 'rt') as f:
pb2.text_format.Merge(f.read(), self.solver_param) self.solver.net.layers[0].set_roidb(roidb) def snapshot(self):
"""Take a snapshot of the network after unnormalizing the learned
bounding-box regression weights. This enables easy use at test-time.
"""
# 给snapshot的bb预测参数做去归一化
net = self.solver.net scale_bbox_params = (cfg.TRAIN.BBOX_REG and
cfg.TRAIN.BBOX_NORMALIZE_TARGETS and
net.params.has_key('bbox_pred')) if scale_bbox_params:
# save original values
orig_0 = net.params['bbox_pred'][0].data.copy()
orig_1 = net.params['bbox_pred'][1].data.copy() # scale and shift with bbox reg unnormalization; then save snapshot
# 去除归一化,乘标准差,加上均值
net.params['bbox_pred'][0].data[...] = \
(net.params['bbox_pred'][0].data *
self.bbox_stds[:, np.newaxis])
net.params['bbox_pred'][1].data[...] = \
(net.params['bbox_pred'][1].data *
self.bbox_stds + self.bbox_means)
# 给snapshot命名
infix = ('_' + cfg.TRAIN.SNAPSHOT_INFIX
if cfg.TRAIN.SNAPSHOT_INFIX != '' else '')
filename = (self.solver_param.snapshot_prefix + infix +
'_iter_{:d}'.format(self.solver.iter) + '.caffemodel')
filename = os.path.join(self.output_dir, filename)
# 存snapshot
net.save(str(filename))
print 'Wrote snapshot to: {:s}'.format(filename) # 只是存入的snapshot的bb参数做了去归一化用于测试,但是训练部分仍需要保持归一化的状态
if scale_bbox_params:
# restore net to original state
net.params['bbox_pred'][0].data[...] = orig_0
net.params['bbox_pred'][1].data[...] = orig_1
return filename def train_model(self, max_iters):
"""Network training loop."""
last_snapshot_iter = -1
timer = Timer()
model_paths = []
while self.solver.iter < max_iters:
# Make one SGD update
timer.tic()
self.solver.step(1)
timer.toc()
if self.solver.iter % (10 * self.solver_param.display) == 0:
print 'speed: {:.3f}s / iter'.format(timer.average_time)
# 达到预设次数保存snapshot
if self.solver.iter % cfg.TRAIN.SNAPSHOT_ITERS == 0:
last_snapshot_iter = self.solver.iter
model_paths.append(self.snapshot())
# 整体迭代完成后也要存snapshot
if last_snapshot_iter != self.solver.iter:
model_paths.append(self.snapshot())
return model_paths def get_training_roidb(imdb):
"""Returns a roidb (Region of Interest database) for use in training."""
if cfg.TRAIN.USE_FLIPPED:
print 'Appending horizontally-flipped training examples...'
# 水平翻转,得到更多的roidb
imdb.append_flipped_images()
print 'done' print 'Preparing training data...'
# 为原始数据集的roidb添加一些说明性的属性,max-overlap,max-classes...
rdl_roidb.prepare_roidb(imdb)
print 'done' return imdb.roidb def filter_roidb(roidb):
"""Remove roidb entries that have no usable RoIs."""
# 删掉没用的RoIs, 有效的图片必须各有前景和背景ROI
def is_valid(entry):
# Valid images have:
# (1) At least one foreground RoI OR
# (2) At least one background RoI
overlaps = entry['max_overlaps']
# find boxes with sufficient overlap
fg_inds = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0]
# Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI)
bg_inds = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) &
(overlaps >= cfg.TRAIN.BG_THRESH_LO))[0]
# image is only valid if such boxes exist
valid = len(fg_inds) > 0 or len(bg_inds) > 0
return valid num = len(roidb)
filtered_roidb = [entry for entry in roidb if is_valid(entry)]
num_after = len(filtered_roidb)
print 'Filtered {} roidb entries: {} -> {}'.format(num - num_after,
num, num_after)
return filtered_roidb def train_net(solver_prototxt, roidb, output_dir,
pretrained_model=None, max_iters=40000):
"""Train a Fast R-CNN network."""
# 训练Fast R-CNN
roidb = filter_roidb(roidb)
sw = SolverWrapper(solver_prototxt, roidb, output_dir,
pretrained_model=pretrained_model) print 'Solving...'
# 训练...
model_paths = sw.train_model(max_iters)
print 'done solving'
return model_paths
py-faster-rcnn代码阅读1-train_net.py & train.py的更多相关文章
-
py faster rcnn+ 1080Ti+cudnn5.0
看了py-faster-rcnn上的issue,原来大家都遇到各种问题. 我要好好琢磨一下,看看到底怎么样才能更好地把GPU卡发挥出来.最近真是和GPU卡较上劲了. 上午解决了g++的问题不是. 然后 ...
-
Faster RCNN代码理解(Python)
转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初 ...
-
Faster rcnn代码理解(1)
这段时间看了不少论文,回头看看,感觉还是有必要将Faster rcnn的源码理解一下,毕竟后来很多方法都和它有相近之处,同时理解该框架也有助于以后自己修改和编写自己的框架.好的开始吧- 这里我们跟着F ...
-
Faster RCNN代码解析
1.faster_rcnn_end2end训练 1.1训练入口及配置 def train(): cfg.GPU_ID = 0 cfg_file = "../experiments/cfgs/ ...
-
Faster rcnn代码理解(2)
接着上篇的博客,咱们继续看一下Faster RCNN的代码- 上次大致讲完了Faster rcnn在训练时是如何获取imdb和roidb文件的,主要都在train_rpn()的get_roidb()函 ...
-
Faster R-CNN代码例子
主要参考文章:1,从编程实现角度学习Faster R-CNN(附极简实现) 经常是做到一半发现收敛情况不理想,然后又回去看看这篇文章的细节. 另外两篇: 2,Faster R-CNN学习总结 ...
-
Faster rcnn代码理解(4)
上一篇我们说完了AnchorTargetLayer层,然后我将Faster rcnn中的其他层看了,这里把ROIPoolingLayer层说一下: 我先说一下它的实现原理:RPN生成的roi区域大小是 ...
-
Faster R-CNN论文阅读摘要
论文链接: https://arxiv.org/pdf/1506.01497.pdf 代码下载: https://github.com/ShaoqingRen/faster_rcnn (MATLAB) ...
-
Faster rcnn代码理解(3)
紧接着之前的博客,我们继续来看faster rcnn中的AnchorTargetLayer层: 该层定义在lib>rpn>中,见该层定义: 首先说一下这一层的目的是输出在特征图上所有点的a ...
-
tensorflow faster rcnn 代码分析一 demo.py
os.environ["CUDA_VISIBLE_DEVICES"]=2 # 设置使用的GPU tfconfig=tf.ConfigProto(allow_soft_placeme ...
随机推荐
-
jq数组,得到遍历生成的id后面的id
//商品选择完成跳转到提交订单页面 function orderDetails(){ var shopCarIds = [];//存放商品的数组 var objs = []; objs = $(&qu ...
-
ANE 从入门到精通 --- 简单的Whatever
Flash还是很好的,不过国内没人用. Whatever了. 以下是ANE制作中的一点笔记 分享下 也留作备份 Step1 编写As3 Library package com.eran { impor ...
-
Configure,make,make install详解
转:http://my.oschina.net/qihh/blog/66113?fromerr=6ej3CfGJ 无论对于一个初学者还是一个资深的Linux程序员,编写Makefile文件都是一件 ...
-
翻译:Knockout 快速上手 - 2: 安装 knockoutJS
只需要五个简单的步骤,就可以做好使用 Knockout 开发的准备! 第一步 我们需要什么? 最低限度,为了完成后面的教程,你需要如下的准备 Web 浏览器 文本编辑器 你的电脑上大约 2M 的磁盘空 ...
-
request.getContextPath获取绝对路径
request.getContextPath获取绝对路径 博客分类: 经验+注意 其他 request.getContextPath 项目需求:所有jsp页必须通过Action转发,不能直接在地址栏链 ...
-
cocos2d-x中的CCScrollView滑动体验不佳
在最近的项目中,使用了Cocos2d-x (2.2.0版本)提供的CCScrollView来拖动一个比较大的画面,但是发现滑动体验非常不佳, 手指离开屏幕后,滑动没有惯性,一个不算太大的画面,要滑动好 ...
-
Tp框架获取客户端IP地址
/** * 获取客户端IP地址 * @param integer $type 返回类型 0 返回IP地址 1 返回IPV4地址数字 * @return mixed */ function get_cl ...
-
sass报 error (Line XX: Invalid GBK character ";\xE4";) 的解决办法
在webstorm配置的SASS,插入中文注释报错: cmd.exe /D /C call D:\ProgramFiles\Ruby24-x64\bin\sass.bat --no-cache --u ...
-
ajax接口和后台交互
//定义一个公众处理ajax的方法 function handelAjax(url,method,parm,callback) { $.ajax({ url:url, type:method, dat ...
-
洗礼灵魂,修炼python(46)--巩固篇—如虎添翼的property
@property 在前面装饰器一章中,提过一句话,装饰器也可以用于类中,确实可以的,并且python的类也内置了一部分装饰器.并且在前两章的hasattr等四个内置方法中,也说过其用法很类似装饰器, ...