MongoDB中聚合工具Aggregate等的介绍与使用

时间:2022-04-14 22:13:30

Aggregate是MongoDB提供的众多工具中的比较重要的一个,类似于SQL语句中的GROUP BY。聚合工具可以让开发人员直接使用MongoDB原生的命令操作数据库中的数据,并且按照要求进行聚合。

MongoDB提供了三种执行聚合的方法:Aggregation Pipleline,map-reduce功能和 Single Purpose Aggregation Operations

其中用来做聚合操作的几个函数是

  • aggregate(pipeline,options) 指定 group 的 keys, 通过操作符 $push/$addToSet/$sum 等实现简单的 reduce, 不支持函数/自定义变量

  • group({ key, reduce, initial [, keyf] [, cond] [, finalize] }) 支持函数(keyfmapReduce 的阉割版本

  • mapReduce

  • count(query)

  • distinct(field,query)

1、Aggregation Pipleline

MongoDB’s aggregation framework is modeled on the concept of data processing pipelines. Documents enter a multi-stage pipeline that transforms the documents into an aggregated result.

管道在*nix中将上一个命令输出的数据作为下一个命令的参数。MongoDB中的管道聚合非常实用,提供高效的数据聚合,并且是MongoDB中数据聚合的首选方法

官方给的图:

MongoDB中聚合工具Aggregate等的介绍与使用

[
{$match: {status: "A"}},
{$group: {_id: "$cust_id", total: {$sum: "$amount"}}}
]

aggreagte是一个数组,其中包含多个对象(命令),通过遍历Pipleline数组对collection中的数据进行操作。

$match:查询条件

$group:聚合的配置

  • _id代表你想聚合的数据的主键,上述数据中,你想聚合所有cust_id相同的条目的amount的总和,那_id即被设置为cust_id_id必须,你可以填写一个空值。

  • total代表你最后想输出的数据之一,这里total是每条结果中amount的总和。

  • $sum是一个聚合的操作符,另外的操作符你可以在官方文档中找到。上图中的命令表示对相同主键(_id)下的amount进行求和。如果你想要计算主键出现的次数,可以把命令写成如下的形式  {$sum: 1}

聚合的过程

看一下图例,所有的数据先经过$match命令,只留下了status为A的数据,接着,对筛选出的数据进行聚合操作,对相同cust_id的数据进行计算amount总和的操作,最后输出结果。

二、aggregate具体介绍

接受两个参数 pipeline/optionspipeline 是 array, 相同的 operator 可以多次使用

pipeline 支持的方法

  • $geoNear geoNear命令可以在查询结果中返回每个点距离查询点的距离

  • $group 指定 group 的 _id(key/keys) 和基于操作符($push/$sum/$addToSet/...) 的累加运算

  • $limit 限制条件

  • $match 输入过滤条件

  • $out 将输出结果保存到 collection

  • $project 修改数据流中的文档结构

  • $redact 是 $project/$match 功能的合并

  • $skip 跳过

  • $sort 对结果排序

  • $unwind 拆解数据

$group 允许用的累加操作符 $addToSet/$avg/$first/$last/$max/$min/$push/$sum,不被允许的累加操作符$each... ,默认最多可以用 100MB RAM, 增加allowDiskUse可以让$group操作更多的数据

下面是aggregate的用法

db.newtest.aggregate([
{$match: {}},
{$skip: 10}, // 跳过 collection 的前 10 行
{$project: {group: 1, datetime: 1, category: 1, count: 1}},
// 如果不选择 {count: 1} 最后的结果中 count_all/count_avg = 0
{$redact: { // redact 简单用法 过滤 group != 'A' 的行
$cond: [{$eq: ["$group", "A"]}, "$$DESCEND", "$$PRUNE"]
}},
{$group: {
_id: {year: {$year: "$datetime"}, month: {$month: "$datetime"}, day: {$dayOfMonth: "$datetime"}},
group_unique: {$addToSet: "$group"},
category_first: {$first: "$category"},
category_last: {$last: "$category"},
count_all: {$sum: "$count"},
count_avg: {$avg: "$count"},
rows: {$sum: 1}
}},
// 拆分 group_unique 如果开启这个选项, 会导致 _id 重复而无法写入 out 指定的 collection, 除非再 $group 一次
// {$unwind: "$group_unique"},
// 只保留这两个字段
{$project: {group_unique: 1, rows: 1}},
// 结果按照 _id 排序
{$sort: {"_id": 1}},
// 只保留 50 条结果
// {$limit: 50},
// 结果另存
{$out: "data_agg_out"},
], {
explain: true,
allowDiskUse: true,
cursor: {batchSize: 0}
})
db.data_agg_out.find()
db.data_agg_out.aggregate([
{$group: {
_id: null,
rows: {$sum: '$rows'}
}}
])
db.data_agg_out.drop()
  • $match 聚合前数据筛选

  • $skip 跳过聚合前数据集的 n 行, 如果 {$skip: 10}, 最后 rows = 5000000 - 10

  • $project 之选择需要的字段, 除了 _id 之外其他的字段的值只能为 1

  • $redact 看了文档不明其实际使用场景, 这里只是简单筛选聚合前的数据

  • $group 指定各字段的累加方法

  • $unwind 拆分 array 字段的值, 这样会导致 _id 重复

  • $project 可重复使用多次 最后用来过滤想要存储的字段

  • $out 如果 $group/$project/$redact 的 _id 没有重复就不会报错

  • 以上方法中 $project/$redact/$group/$unwind 可以使用多次

二、group

group 比 aggregate 好的一个地方是 map/reduce 都支持用 function 定义, 下面是支持的选项

  • ns 如果用 db.runCommand({group: {}}) 方式调用, 需要 ns 指定 collection
  • cond 聚合前筛选
  • key 聚合的 key
  • initial 初始化 累加 结果
  • $reduce 接受 (curr, result) 参数, 将 curr 累加到 result
  • keyf 代替 key 用函数生成聚合用的主键
  • finalize 结果处理

需要保证输出结果小于 16MB 因为 group 没有提供转存选项

db.data.group({
cond: {'group': 'A'},
// key: {'group': 1, 'category': 1},
keyf: function(doc) {
var dt = new Date(doc.created);
// or
// var dt = doc.datetime;
return {
year: doc.datetime.getFullYear(),
month: doc.datetime.getMonth() + 1,
day: doc.datetime.getDate()
}
},
initial: {count: 0, category: []},
$reduce: function(curr, result) {
result.count += curr.count;
if (result.category.indexOf(curr.category) == -1) {
result.category.push(curr.category);
}
},
finalize: function(result) {
result.category = result.category.join();
}
})

如果要求聚合大量数据, 就需要用到 mapReduce

三、mapReduce

  • query 聚合前筛选
  • sort 对聚合前的数据排序 用来优化 reduce
  • limit 限制进入 map 的数据
  • map(function) emit(key, value) 在函数中指定聚合的 K/V
  • reduce(function) 参数 (key, values) key 在 map 中定义了, values 是在这个 K 下的所有 V 数组
  • finalize 处理最后结果
  • out 结果转存 可以选择另外一个 db
  • scope 设置全局变量
  • jdMode(false) 是否(默认是)把 map/reduce 中间结果转为 BSON 格式, BSON 格式可以利用磁盘空间, 这样就可以处理大规模的数据集
  • verbose(true) 详细信息

如果设 jsMode 为 true 不进行 BSON 转换, 可以优化 reduce 的执行速度, 但是由于内存限制最大在 emit 数量小于 500,000 时使用

写 mapReduce 时需要注意

db.data.mapReduce(function() {
var d = this.datetime;
var key = {
year: d.getFullYear(),
month: d.getMonth() + 1,
day: d.getDate(),
};
var value = {
count: this.count,
rows: 1,
groups: [this.group],
}
emit(key, value);
}, function(key, vals) {
var reducedVal = {
count: 0,
groups: [],
rows: 0,
};
for(var i = 0; i < vals.length; i++) {
var v = vals[i];
reducedVal.count += v.count;
reducedVal.rows += v.rows;
for(var j = 0; j < v.groups.length; j ++) {
if (reducedVal.groups.indexOf(v.groups[j]) == -1) {
reducedVal.groups.push(v.groups[j]);
}
}
}
return reducedVal;
}, {
query: {},
sort: {datetime: 1}, // 需要索引 否则结果返回空
limit: 50000,
finalize: function(key, reducedVal) {
reducedVal.avg = reducedVal.count / reducedVal.rows;
return reducedVal;
},
out: {
inline: 1,
// replace: "",
// merge: "",
// reduce: "",
},
scope: {},
jsMode: true
})

测试数据:

> db.newtest.find()
{ "_id" : ObjectId("5a2544352ba57ccba824d7bf"), "group" : "E", "created" : 1402764223, "count" : 63, "datetime" : 1512391126, "title" : "aa", "category" : "C8" }
{ "_id" : ObjectId("5a2544512ba57ccba824d7c0"), "group" : "I", "created" : 1413086660, "count" : 93, "datetime" : 1512391261, "title" : "bb", "category" : "C10" }
{ "_id" : ObjectId("5a2544562ba57ccba824d7c1"), "group" : "H", "created" : 1440750343, "count" : 41, "datetime" : 1512391111, "title" : "cc", "category" : "C1" }
{ "_id" : ObjectId("5a2544562ba57ccba824d7c2"), "group" : "S", "created" : 1437710373, "count" : 14, "datetime" : 1512392136, "title" : "dd", "category" : "C10" }
{ "_id" : ObjectId("5a2544562ba57ccba824d7c3"), "group" : "Z", "created" : 1428307315, "count" : 78, "datetime" : 1512391166, "title" : "ee", "category" : "C5" }
{ "_id" : ObjectId("5a2544562ba57ccba824d7c4"), "group" : "R", "created" : 1402809274, "count" : 74, "datetime" : 1512391162, "title" : "ff", "category" : "C9" }
{ "_id" : ObjectId("5a2544562ba57ccba824d7c5"), "group" : "Y", "created" : 1400571321, "count" : 66, "datetime" : 1512139164, "title" : "gg", "category" : "C2" }
{ "_id" : ObjectId("5a2544562ba57ccba824d7c6"), "group" : "L", "created" : 1416562128, "count" : 5, "datetime" : 1512393165, "title" : "hh", "category" : "C1" }
{ "_id" : ObjectId("5a2544562ba57ccba824d7c7"), "group" : "E", "created" : 1414057884, "count" : 12, "datetime" : 1512391165, "title" : "ii", "category" : "C3" }
{ "_id" : ObjectId("5a2544572ba57ccba824d7c8"), "group" : "L", "created" : 1418879346, "count" : 67, "datetime" : 1512391167, "title" : "gg", "category" : "C3" }

四、总结

method allowDiskUse out function
aggregate true pipeline/collection false
group false pipeline true
mapReduce jsMode pipeline/collection true
  • aggregate 基于累加操作的的聚合 可以重复利用 $project/$group 一层一层聚合数据, 可以用于大量数据(单输出结果小于 16MB) 不可用于分片数据
  • mapReduce 可以处理超大数据集 需要严格遵守 mapReduce 中的结构一致/幂等 写法, 可增量输出/合并, 见 out options
  • group RDB 中的 group by 简单需求可用(只有 inline 输出) 会产生 read lock

MongoDB中聚合工具Aggregate等的介绍与使用的更多相关文章

  1. MongoDB中的数据聚合工具Aggregate和Group

    周煦辰 2016-01-16 来说说MongoDB中的数据聚合工具. Aggregate是MongoDB提供的众多工具中的比较重要的一个,类似于SQL语句中的GROUP BY.聚合工具可以让开发人员直 ...

  2. MongoDB的聚合函数 Aggregate

    Aggregate的使用,有利于我们对MongoDB中的集合进行进一步的拆分. 示例: db.collection.aggregate( {$match:{x:1}, {limit:10}, {$gr ...

  3. MongoDB中4种日志的详细介绍

    前言 任何一种数据库都有各种各样的日志,MongoDB也不例外.MongoDB中有4种日志,分别是系统日志.Journal日志.oplog主从日志.慢查询日志等.这些日志记录着MongoDB数据库不同 ...

  4. MongoDB 中聚合统计计算--&dollar;SUM表达式

    我们一般通过表达式$sum来计算总和.因为MongoDB的文档有数组字段,所以可以简单的将计算总和分成两种:1,统计符合条件的所有文档的某个字段的总和:2,统计每个文档的数组字段里面的各个数据值的和. ...

  5. 【翻译】MongoDB指南&sol;聚合——聚合管道

    [原文地址]https://docs.mongodb.com/manual/ 聚合 聚合操作处理数据记录并返回计算后的结果.聚合操作将多个文档分组,并能对已分组的数据执行一系列操作而返回单一结果.Mo ...

  6. 在MongoDB中执行查询、创建索引

    1. MongoDB中数据查询的方法 (1)find函数的使用: (2)条件操作符: (3)distinct找出给定键所有不同的值: (4)group分组: (5)游标: (6)存储过程. 文档查找 ...

  7. MongoDB的聚合操作以及与Python的交互

    上一篇主要介绍了MongoDB的基本操作,包括创建.插入.保存.更新和查询等,链接为MongoDB基本操作. 在本文中主要介绍MongoDB的聚合以及与Python的交互. MongoDB聚合 什么是 ...

  8. MongoDB入门---聚合操作&amp&semi;管道操作符&amp&semi;索引的使用

    经过前段时间的学习呢,我们对MongoDB有了一个大概的了解,接下来就要开始使用稍稍深入一点的东西了,首先呢,就是MongoDB中的聚合函数,跟mysql中的count等函数差不多.话不多说哈,我们先 ...

  9. Mongodb的聚合和管道

    MongoDB 聚合 MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果. aggregate() 方法 MongoDB中聚合的方法使用agg ...

随机推荐

  1. CI Weekly &num;10 &vert; 2017 DevOps 趋势预测

    2016 年的最后几个工作日,我们对 flow.ci Android & iOS 项目做了一些优化与修复: iOS 镜像 cocoapods 版本更新: fir iOS上传插件时间问题修复: ...

  2. myeclipse中如何修改项目的名称

     第一种:myeclipse通用版 1.打比方,比如复制一个现有的项目,重命名项目名称,这里举例名称重新命名为"劳黑炭" 2.要清楚的是,这里的项目名称重新命名了,但是Web项目本 ...

  3. eclipse连hadoop2&period;x运行wordcount 转载

    转载地址:http://my.oschina.net/cjun/blog/475576 一.新建java工程,并且导入hadoop相关jar包 此处可以直接创建mapreduce项目就可以,不用下面折 ...

  4. 实例存储支持的AMI创建步骤

    实例存储支持的AMI创建步骤 一.Windows AMI 1. 选择实例存储支持的AMI创建实例. 2. 远程登录实例进行定制化配置. 3. 通过Web控制台或命令行Bundle实例(并自动上传到S3 ...

  5. js的日期控件

    jeDate使用的时候,如果不是直接放在html中而是通过Js加载进去的,那么最好来个延迟. http://www.sucaijiayuan.com/Js/DateTime/ http://www.c ...

  6. jQ1&period;5中的事件系统(低版本的事件系统)

    jQ的一个个版本事系统都在修正着bug和不断优化, 而且看了事件系统对事件的兼容更加熟悉, 更加了解jQ内部的事件机制. 因为jQ对事件系统引入了事件命名空间,事件的代理, 事件的手动触发,事件描述等 ...

  7. Halcon 映射校正例程注释&lpar;MapImage&rpar;

    *关闭窗口 dev_close_window () dev_close_window () *打开指定大小.颜色背景的窗口 dev_open_window (, , /, /, 'black', Wi ...

  8. vivo7&period;0以上系统如何无需Root激活Xposed框架的方法

    在较多公司的引流或者业务操作中,基本都需要使用安卓的黑高科技术Xposed框架,几天前我们公司购买了一批新的vivo7.0以上系统,基本都都是基于7.0以上版本,基本都不能够获取Root的su超级权限 ...

  9. js-MediumGrade-base&period;js

    // 1.JavaScript 中的类型包括 Number(数字) String(字符串) Boolean(布尔) Symbol(符号)(第六版新增) Object(对象) Function(函数) ...

  10. 03-spark kafka

    1.概念 Kafka是一个开源的消息系统.由Scala编写,它具备以下特点: ①消息持久化: 为了从大数据中获取有价值的信息,任何信息的丢失都是负担不起的.使用Kafka时,message会被存储并且 ...