【[SDOI2017]数字表格】

时间:2022-03-07 22:17:03

\[Ans=\prod_{i=1}^N\prod_{j=1}^MFib[(i,j)]
\]

连乘的反演,其实并没有什么不一样

我们把套路柿子拿出来

\[F(n)=\sum_{i=1}^N\sum_{j=1}^M[n|(i,j)]=\left \lfloor \frac{N}{n} \right \rfloor\times \left \lfloor \frac{M}{n} \right \rfloor=\sum_{n|d}f(d)
\]

\[f(n)=\sum_{i=1}^N\sum_{j=1}^M[n=(i,j)]=\sum_{n|d}\mu(\frac{d}{n})\left \lfloor \frac{N}{d} \right \rfloor \left \lfloor \frac{M}{d} \right \rfloor
\]

我们要求的就是

\[Ans=\prod_{i=1}^NFib(i)^{f(i)}
\]

把它化开

\[Ans=\prod_{i=1}^NFib(i)^{\sum_{i|d}\mu(\frac{d}{i})\left \lfloor \frac{N}{d} \right \rfloor \left \lfloor \frac{M}{d} \right \rfloor}
\]

非常显然的就是

\[Ans=\prod_{d=1}^N(\prod_{i|d}Fib(i)^{\mu(\frac{d}{i})})^{\left \lfloor \frac{N}{d} \right \rfloor \left \lfloor \frac{M}{d} \right \rfloor}
\]

利用调和级数在\(O(nlogn)\)的时间内处理出\(\prod_{i|d}Fib(i)^{\mu(\frac{d}{i})}\)的值,做一个前缀积就好了,之后整除分块和快速幂一起上就好了

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define LL long long
#define maxn 1000005
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const LL mod=1e9+7;
inline int read()
{
char c=getchar();int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
LL fib[maxn],pre[maxn];
int T,N[1005],M[1005],U;
int f[maxn],p[maxn],mu[maxn];
LL exgcd(LL a,LL b,LL &x,LL &y) {if(!b) return x=1,y=0,a;LL r=exgcd(b,a%b,y,x);y-=a/b*x;return r;}
inline LL quick(LL a,LL b) {LL S=1;while(b) {if(b&1ll) S=S*a%mod;b>>=1ll;a=a*a%mod;} return S;}
inline LL inv(LL a){LL x,y;LL r=exgcd(a,mod,x,y);return (x%mod+mod)%mod;}
inline LL solve(LL a,int b) {if(!b) return 1;if(b==1) return a;if(b==-1) return inv(a);}
int main()
{
T=read();
for(re int i=1;i<=T;i++) N[i]=read(),M[i]=read();
for(re int i=1;i<=T;i++) if(N[i]>M[i]) std::swap(N[i],M[i]);
for(re int i=1;i<=T;i++) U=max(U,N[i]);
mu[1]=1,f[1]=1,pre[1]=1,pre[0]=1;
for(re int i=2;i<=U;i++)
{
pre[i]=1;
if(!f[i]) p[++p[0]]=i,mu[i]=-1;
for(re int j=1;j<=p[0]&&p[j]*i<=U;j++) {f[p[j]*i]=1;if(i%p[j]==0) break;mu[p[j]*i]=-1*mu[i];}
}
fib[1]=fib[2]=1;
for(re int i=3;i<=U;i++) fib[i]=fib[i-1]+fib[i-2],fib[i]%=mod;
for(re int i=1;i<=U;i++)
for(re int j=1;j*i<=U;j++) pre[i*j]*=solve(fib[i],mu[j]),pre[i*j]%=mod;
for(re int i=1;i<=U;i++) pre[i]*=pre[i-1],pre[i]%=mod;
for(re int t=1;t<=T;t++)
{
int n=N[t],m=M[t];
LL ans=1;
for(re LL l=1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
ans*=quick(pre[r]*inv(pre[l-1])%mod,(n/l)*(m/l)%(mod-1));ans%=mod;
}
printf("%lld\n",ans);
}
return 0;
}

【[SDOI2017]数字表格】的更多相关文章

  1. BZOJ&colon;4816&colon; &lbrack;Sdoi2017&rsqb;数字表格

    4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 501  Solved: 222[Submit][Status ...

  2. &lbrack;Sdoi2017&rsqb;数字表格 &lbrack;莫比乌斯反演&rsqb;

    [Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...

  3. 【BZOJ 4816】 4816&colon; &lbrack;Sdoi2017&rsqb;数字表格 (莫比乌斯)

    4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 666  Solved: 312 Description Do ...

  4. P3704 &lbrack;SDOI2017&rsqb;数字表格

    P3704 [SDOI2017]数字表格 链接 分析: $\ \ \ \prod\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} f[gcd(i, j)]$ $ ...

  5. &lbrack;SDOI2017&rsqb;数字表格 --- 套路反演

    [SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...

  6. 题解-&lbrack;SDOI2017&rsqb;数字表格

    题解-[SDOI2017]数字表格 前置知识: 莫比乌斯反演</> [SDOI2017]数字表格 \(T\) 组测试数据,\(f_i\) 表示 \(\texttt{Fibonacci}\) ...

  7. bzoj4816 &lbrack;Sdoi2017&rsqb;数字表格

    Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...

  8. &lbrack;SDOI2017&rsqb;数字表格

    Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...

  9. 【刷题】BZOJ 4816 &lbrack;Sdoi2017&rsqb;数字表格

    Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...

  10. P3704 &lbrack;SDOI2017&rsqb;数字表格 (莫比乌斯反演)

    [题目链接] https://www.luogu.org/problemnew/show/P3704 [题解] https://www.luogu.org/blog/cjyyb/solution-p3 ...

随机推荐

  1. Less2css error 终极解决方案(转载)

    用到less时遇到的问题 ,然后复制过来的 使用sublime Text3 的时候,安装less2Css后,和很多人一样以为大功告成,开始要运行编译less文件,结果开始发现 于是乎开始搜索问题和解决 ...

  2. nginx 配置ci ,tp

    #local ciserver {    listen       80;    server_name  ci.local;        root    E:/test/CodeIgniter/; ...

  3. 面试官的七种武器:Java篇

    起源 自己经历过的面试也不少了,互联网的.外企的,都有.总结一下这些面试的经验,发现面试官问的问题其实不外乎几个大类,玩不出太多新鲜玩意的.细细想来,面试官拥有以下七种武器.恰似古龙先生笔下的武侠世界 ...

  4. POJ2001-Shortest Prefixes-Trie树应用

    沉迷WOW又颓了两天orz,暴雪爸爸要在国服出月卡了...这是要我好好学习吗?赶紧来刷题了... OJ:http://poj.org/problem?id=2001 题目大意是求所有字符串里每一个字符 ...

  5. javaShop的一些总结

    主要参考 pdf 找到对应的文件吧,具体怎么制作一个挂件 还没有理解里面的思路,就没有研究了,改一个商城项目遇到了,也只有慢慢解决 加油! CSDN下载地址:http://download.csdn. ...

  6. &lbrack;Data Structure&rsqb; 红黑树&lpar; Red-Black Tree &rpar; - 笔记

    1.  红黑树属性:根到叶子的路径中,最长路径不大于最短路径的两倍. 2. 红黑树是一个二叉搜索树,并且有 a. 每个节点除了有左.右.父节点的属性外,还有颜色属性,红色或者黑色. b. ( 根属性 ...

  7. swift -- 代理delegate

    1.声明协议 protocol SecondDelagate { func sendValue(text : String!) -> Void } 2.声明代理属性 var delegate : ...

  8. hdu1540线段树

    https://vjudge.net/contest/66989#problem/I #include<iostream> #include<cstdio> #include& ...

  9. 360浏览器对CSS的补齐

    360浏览器对很多CSS不兼容,导致了很多代码显示不正常, 常见的解决方法: 很多人在源代码加了<meta content=\"IE=edge\" http-equiv=\& ...

  10. Sql Server 开放4399端口命令行

    netsh advfirewall firewall add rule name="Open Port 80" dir=in action=allow protocol=TCP l ...