题目大意:给你一个$n\times m$的方格,要求你从中选择一些数,其中没有相邻两个数,使得最后和最大
题解:网络流,最小割,发现相邻的两个点不可以同时选择,进行黑白染色,原点向黑点连一条容量为点权的边,白点向汇点连一条容量为点权的边,黑点向周围一圈的白点连容量为$inf$的边,总权值减去跑出来的最小割就是答案。
卡点:无
C++ Code:
#include <algorithm>
#include <cstdio>
#include <cctype>
namespace __IO {
namespace R {
int x, ch;
inline int read() {
ch = getchar();
while (isspace(ch)) ch = getchar();
for (x = ch & 15, ch = getchar(); isdigit(ch); ch = getchar()) x = x * 10 + (ch & 15);
return x;
}
}
}
using __IO::R::read; #define maxn 100010
#define maxm (maxn << 3)
const int inf = 0x3f3f3f3f; int n, m, sum;
namespace Network_Flow {
int st, ed, MF;
int head[maxn], cnt = 1;
struct Edge {
int to, nxt, w;
} e[maxm << 1];
inline void addedge(int a, int b, int c) {
e[++cnt] = (Edge) {b, head[a], c}; head[a] = cnt;
e[++cnt] = (Edge) {a, head[b], 0}; head[b] = cnt;
} int GAP[maxn], d[maxn], lst[maxn];
int q[maxn], h, t;
void init() {
GAP[d[ed] = 1] = 1;
for (int i = st; i <= ed; i++) lst[i] = head[i];
q[h = t = 0] = ed;
while (h <= t) {
int u = q[h++];
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (!d[v]) {
d[v] = d[u] + 1;
GAP[d[v]]++;
q[++t] = v;
}
}
}
}
int dfs(int u, int low) {
if (!low || u == ed) return low;
int w, res = 0;
for (int &i = lst[u]; i; i = e[i].nxt) if (e[i].w) {
int v = e[i].to;
if (d[u] == d[v] + 1) {
w = dfs(v, std::min(low, e[i].w));
res += w, low -= w;
e[i].w -= w, e[i ^ 1].w += w;
if (!low) return res;
}
}
if (!(--GAP[d[u]])) d[st] = ed + 1;
++GAP[++d[u]], lst[u] = head[u];
return res;
}
void ISAP(int __st, int __ed) {
st = __st, ed = __ed;
init();
while (d[st] <= ed) MF += dfs(st, inf);
}
}
using Network_Flow::addedge; inline int get(int x, int y) {return (x - 1) * m + y;}
const int D[2][4] = {{0, 1, 0, -1}, {1, 0, -1, 0}};
inline bool over_range(int x, int y) {
return x < 1 || x > n || y < 1 || y > m;
}
int main() {
n = read(), m = read();
int st = 0, ed = n * m + 1;
for (int i = 1, x, pos; i <= n; i++) {
for (int j = 1; j <= m; j++) {
sum += x = read(), pos = get(i, j);
if (i + j & 1) {
addedge(st, pos, x);
for (int k = 0; k < 4; k++) {
int __x = i + D[0][k], __y = j + D[1][k];
if (!over_range(__x, __y)) addedge(pos, get(__x, __y), inf);
}
} else addedge(pos, ed, x);
}
}
Network_Flow::ISAP(st, ed);
printf("%d\n", sum - Network_Flow::MF);
return 0;
}
[洛谷P2774]方格取数问题的更多相关文章
-
洛谷 P2774 方格取数问题 解题报告
P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...
-
洛谷 - P2774 - 方格取数问题 - 二分图最大独立点集 - 最小割
https://www.luogu.org/problemnew/show/P2774 把两个相邻的节点连边,这些边就是要方便最小割割断其他边存在的,容量无穷. 这种类似的问题的话,把二分图的一部分( ...
-
洛谷P2774 方格取数问题(最小割)
传送门 考虑一下,答案就是全局和减去舍弃和 不难发现,如果我们按行数+列数的奇偶性分为两类,那么每一类中的数必然互不相邻 那么我们把原图的点分为黑点和白点两类,原地向白点连边,黑点向汇点连边,容量为点 ...
-
洛谷P2774 方格取数问题(最小割)
题意 $n \times m$的矩阵,不能取相邻的元素,问最大能取多少 Sol 首先补集转化一下:最大权值 = sum - 使图不连通的最小权值 进行黑白染色 从S向黑点连权值为点权的边 从白点向T连 ...
-
洛谷 [P2774] 方格取数问题
二分图最大点权独立集 通过题目描述我们可以很明显的看出要通过二分图建模,二分图求最大独立点集很容易,就是建立二分图求n-最小割,然而这里加入了权值,而且权值是在点上的,那么我们对于每个点连一条到源点或 ...
-
洛谷 P2774 方格取数问题【最小割】
因为都是正整数,所以当然取得越多越好.先把所有点权加起来,黑白染色后,s向所有黑点连流量为点权的边,所有白点向t连流量为点权的边,然后黑点向相邻的四个白点连流量为inf的边,表示不可割,这样一来,对于 ...
-
棋盘DP三连——洛谷 P1004 方格取数 &;&;洛谷 P1006 传纸条 &;&;Codevs 2853 方格游戏
P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...
-
洛谷 P1004 方格取数 题解
P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...
-
洛谷 P1004 方格取数 【多进程dp】
题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...
随机推荐
-
dWebBrowser常用知识点
1.webbrowser调用的就是本机IE,并且webbrowser默认就是运行在IE7 mode下,除非你改变它. 2.不装IE,无法用webbrowser. 3.设置WebBrowser在IE9 ...
-
数据结构--树状数组&;&;线段树--基本操作
随笔目的:方便以后对树状数组(BIT)以及基本线段树的回顾 例题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1166 例题:hdu 1166 敌兵布阵 T ...
-
linux Centos 6.5 FTP服务原理及vsfptd的安装、配置(转)
本篇随笔将讲解FTP服务的原理以及vsfptd这个最常用的FTP服务程序的安装与配置... 一.FTP服务原理 FTP(File Transfer Protocol)是一个非常古老并且应用十分广泛的文 ...
-
Maven管理Android项目1
maven-android-plugin网站:https://code.google.com/p/maven-android-plugin/wiki/GettingStarted android ...
-
iOS 创建一个在退出登录时可以销毁的单例
一.单例简介 单例模式是在软件开发中经常用的一种模式.单例模式通俗的理解是,在整个软件生命周期内,一个类只能有一个实例对象存在. 二.遇到的问题 在平时开发使用单例的过程中,有时候会有这样的需求,在用 ...
-
javascript编码规范总结
1.嵌入规则 Javascript程序应该尽量放在.js的文件中,需要调用的时候在页面中以<script src="filename.js">的形式包含进来.Javas ...
-
如何知道一个EXE使用什么开发语言开发的
一般是看EXE调用哪些DLL,这可以使用VC++中的工具Dependency Walker,它可以列出静态链接的所有DLL. 如果EXE中的DLL包括MSVBVM60.DLL,则是使用VB 6.0开发 ...
-
jsp篇 之 Jsp中的内置对象和范围对象
Jsp中的内置对象: 在jsp页面代码中不需要声明,直接可以使用的对象. 一共有[9个内置对象]可以直接使用. 对象类型 名字 PageContext pageC ...
-
REACT map dictionary
Object.entries(obj).map(([key, value]) => ( console.log(key); console.log(value); ))
-
为Qemu aarch32添加BeautifulSoup4模块
环境 Qemu:2.8.0 开发板:vexpress-ca9 概述 上一篇博文已经可以让我们的开发板可以成功的ping通百度了,据说Python的网络功能也很强大,而Beautiful Soup是 ...