bzoj 1025 [SCOI2009]游戏(置换群,DP)

时间:2022-04-15 01:06:24

【题目链接】

http://www.lydsy.com/JudgeOnline/problem.php?id=1025

【题意】

给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种。

【思路】

对于一个置换,如果分解后的到的循环长度为

A1,A2,A3…

则答案为lcm(A1,A2…)的不同种数,即有多少个不同的lcm满足:

A1+A2+A3+…=n

lcm=lcm(A1,A2,A3…)

对于A[1..]的lcm,

lcm=a1^max{p1}*a2^max{p2}..

因为很多情况会产生相同的lcm,所以只考虑max{pi},因为max不同则lcm一定不同,即问题转化为求方案数满足:

a1^max{p1}*a2^max{p2}<=n

  设f[i][j]表示前i个质数和为j的方案,则有:

f[i][j]=f[i-1][j]+sigma{ f[i-1][j-p[i]^k] }

  则答案为sigma{ f[tot][i] }

【代码】

 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long ll;
const int N = 1e3+; int n;
int p[N],su[N],tot; ll f[N][N]; void get_prime()
{
for(int i=;i<=n;i++) if(!su[i]) {
p[++tot]=i;
for(int j=i*i;j<=n;j+=i) su[j]=;
}
}
int main()
{
scanf("%d",&n);
get_prime();
f[][]=;
for(int i=;i<=tot;i++) {
for(int j=;j<=n;j++) {
f[i][j]=f[i-][j];
for(int k=p[i];k<=j;k*=p[i])
f[i][j]+=f[i-][j-k];
}
}
ll ans=;
for(int i=;i<=n;i++) ans+=f[tot][i];
printf("%lld",ans);
return ;
}