【题目链接】
http://www.lydsy.com/JudgeOnline/problem.php?id=1025
【题意】
给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种。
【思路】
对于一个置换,如果分解后的到的循环长度为
A1,A2,A3…
则答案为lcm(A1,A2…)的不同种数,即有多少个不同的lcm满足:
A1+A2+A3+…=n
lcm=lcm(A1,A2,A3…)
对于A[1..]的lcm,
lcm=a1^max{p1}*a2^max{p2}..
因为很多情况会产生相同的lcm,所以只考虑max{pi},因为max不同则lcm一定不同,即问题转化为求方案数满足:
a1^max{p1}*a2^max{p2}<=n
设f[i][j]表示前i个质数和为j的方案,则有:
f[i][j]=f[i-1][j]+sigma{ f[i-1][j-p[i]^k] }
则答案为sigma{ f[tot][i] }
【代码】
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long ll;
const int N = 1e3+; int n;
int p[N],su[N],tot; ll f[N][N]; void get_prime()
{
for(int i=;i<=n;i++) if(!su[i]) {
p[++tot]=i;
for(int j=i*i;j<=n;j+=i) su[j]=;
}
}
int main()
{
scanf("%d",&n);
get_prime();
f[][]=;
for(int i=;i<=tot;i++) {
for(int j=;j<=n;j++) {
f[i][j]=f[i-][j];
for(int k=p[i];k<=j;k*=p[i])
f[i][j]+=f[i-][j-k];
}
}
ll ans=;
for(int i=;i<=n;i++) ans+=f[tot][i];
printf("%lld",ans);
return ;
}