【论文标题】Amazon.com recommendations: item-to-item collaborative filtering (2003,Published by the IEEE Computer Society)
【论文作者】Greg Linden,Brent Smith,and Jeremy York • Amazon.com
【论文链接】Paper (5-pages // Double column)
【Info】
亚马逊是推荐系统领域最具代表性的公司之一。(还有一家是Netflix)
【摘要】
推荐算法最出名的是它们在电子商务网站上的使用,在这些网站上,他们使用关于一个月板的兴趣来生成推荐项目列表。许多应用程序只使用客户购买的商品,并显式地表示它们的兴趣,但它们也可以使用其他属性,包括查看的项目、人口数据、主题兴趣和最喜欢的艺术家。在亚马逊网站,我们使用推荐算法为每个客户个性化在线商店。这家店从顾客的兴趣上发生了根本性的变化,向一位软件工程师展示了编程的头衔,并向一位新妈妈展示了婴儿玩具。点击率和转化率——两项基于网络和电子邮件广告效果的重要指标——大大超过了横幅广告和畅销书榜单等非目标内容。
【现状】
电子商务推荐算法面临着一个挑战性的环境。例如:
【总述】