刚参加完蓝桥杯 弱鸡错了好几道。。回头一看确实不难 写起来还是挺慢的
于是开始了刷题的道路
蓝桥杯又名搜索杯 暴力杯。。。于是先从dfs刷起
八皇后是很经典的dfs问题 洛谷的这道题是这样的
上面的布局可以用序列2 4 6 1 3 5来描述,第i个数字表示在第i行的相应位置有一个棋子,如下:
行号 1 2 3 4 5 6
列号 2 4 6 1 3 5
这只是跳棋放置的一个解。请编一个程序找出所有跳棋放置的解。并把它们以上面的序列方法输出。解按字典顺序排列。请输出前3个解。最后一行是解的总个数。
输入输出格式
输入格式:
一个数字N (6 <= N <= 13) 表示棋盘是N x N大小的。
输出格式:
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
输入输出样例
输入样例#1:
6
输出样例#1:
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4 弱鸡艰难的写了一个dfs 交一遍之后最后一个测试点没过 应该就是n==13的时候 本地跑了一下确实将近两秒才出来
我的判断条件:
if(m[s][i]==)
{
int flag=;
for(x=;x<n;x++)
if(m[x][i]==)
{
flag=;
break;
}
if(flag)
for(y=i;y<n;y++)
if(m[s+y-i][y]==&&(s+(y-i)<n))
{
flag=;
break;
}
if(flag)
for(y=;y<i;y++)
if(m[s-(i-y)][y]==&&(s-(i-y)>=))
{
flag=;
break;
}
if(flag)
for(y=;y<i;y++)
if(m[s+(i-y)][y]==&&(s+(i-y)<n))
{
flag=;
break;
}
if(flag)
for(y=i;y<n;y++)
if(m[s-(y-i)][y]==&&(s-(y-i)>=))
flag=;
if(flag)
{
m[s][i]=;
f[s]=i+;
dfs(s+);
m[s][i]=;
}
显然写的又笨又蠢。。
瞄一眼题解:
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
int a[],b[],c[],d[];
int total;
int n;
int print()
{
if(total<=)
{
for(int k=;k<=n;k++)
cout<<a[k]<<" ";
cout<<endl;
}
total++;
}
void queen(int i)
{
if(i>n)
{
print();
return;
}
else
{
for(int j=;j<=n;j++)//尝试可能的位置
{
if((!b[j])&&(!c[i+j])&&(!d[i-j+n]))//如果没有皇后占领,执行以下程序
{
a[i]=j;//标记i排是第j个
b[j]=;//宣布占领纵列
c[i+j]=;
d[i-j+n]=;
//宣布占领两条对角线
queen(i+);//进一步搜索,下一个皇后
b[j]=;
c[i+j]=;
d[i-j+n]=;
//(回到上一步)清除标记
}
}
}
}
int main()
{
cin>>n;
queen();
cout<<total;
return ;
}
其中 a数组表示的是行;b数组表示的是列;c表示的是左下到右上的对角线;d表示的是左上到右下的对角线;
因为对于一个对角线来说 其中的点的i和j是有确定的关系的 所以不必挨个遍历去寻找对角线上有没有其他的皇后 直接把判断的复杂度降低到了O(1)!!
dalao确实是dalao 本弱鸡还是太菜了