u-boot启动流程分析(1)_平台相关部分

时间:2021-07-16 16:21:20

转自:http://www.wowotech.net/u-boot/boot_flow_1.html

 

1. 前言

本文将结合u-boot的“board—>machine—>arch—>cpu”框架,介绍u-boot中平台相关部分的启动流程。并通过对启动流程的简单分析,掌握u-boot移植的基本方法。

注1:本文所使用的u-boot版本,是2016/4/23从u-boot官网(git://git.denx.de/u-boot.git)导入的一个快照,具体可参考“https://github.com/wowotechX/u-boot”。

注2:为了方便,本文将“平台相关部分的启动流程”,定义为从u-boot启动开始,到board有关的C代码被执行为止后续的部分,会在下一篇文章中分析。

2. 多平台架构

嵌入式软件工程师,在设计某一个软件的时候,或多或少的都会思考“跨平台”的问题(驱动和系统工程师尤甚):

这个“软件”是否可以运行于不同的软硬件环境中?

这个“软件”和其它“软件”是否有共同的地方可以抽象出来?

这些问题的本质,是软件工程中的抽象和封装,以最简洁、最高效的方式,实现尽可能多的功能。u-boot作为一个跨平台、跨设备的bootloader,同样会面临这些问题。它的解决方案,就是“board—>machine—>arch—>cpu”框架,如下:

u-boot启动流程分析(1)_平台相关部分

图片1 u-boot多平台架构

几个路径

  • board/xxx/xxx-board
  • arch/arm/mach-xxx
  • arch/arm
  • arch/arm/cpu/armv8/

该结构其实就是device tree普及之前,linux kernel所采用的结构,它基本上和硬件的拓扑结构保持一致:

一个嵌入式产品,无论是一款手机,还是一块开发板,首先呈现给用户的就是一个可满足产品功能的“硬件实体”,该“实体”包括一些必要的外部设备,如显示屏、按键、麦克风、扬声器等等,它就是图片1中最大的那个方块----board

除了用户能感知到的外部设备,board上还有一个最重要设备----CPU,是产品的运算和控制中心。不过,众所周知,当今的CPU非常不单纯,它在一个芯片上,尽可能多的集成了和外部设备有关的功能,例如各种各样的设备控制器。这就是传说中的SOC,对应图片1中的“machine”;

SOC里面,涉及到ARCH和CPU的概念,需要注意的是,u-boot的抽象,和ARM等标准抽象(可参考“ARM概念梳理:Architecture, Core, CPU,SOC”中的描述)不一致。如图片1所示,u-boot把arm(包括arm32和arm64)归为一个ARCH大类,而把armv8等抽象为CPU。有点奇葩,大家记着就是了。

基于图片1的架构,u-boot和平台有关的初始化流程,显得比较直观、清晰:

1)u-boot启动后,会先执行CPU(如armv8)的初始化代码。

2)CPU相关的代码,会调用ARCH的公共代码(如arch/arm)。

3)ARCH的公共代码,在适当的时候,调用board有关的接口。u-boot的功能逻辑,大多是由common代码实现,部分和平台有关的部分,则由公共代码声明,由board代码实现。

4)board代码在需要的时候,会调用machine(arch/arm/mach-xxx)提供的接口,实现特定的功能。因此machine的定位是提供一些基础的代码支持,不会直接参与到u-boot的功能逻辑中。

具体请参考后面的分析。

3. 平台相关部分的启动流程分析

本文先不涉及u-boot和平台相关的Kconfig/Makefile部分,以ARM64为例,假定u-boot首先从“arch/arm/cpu/armv8/start.S”的_start接口开始执行。因此我们从_start开始分析。

注3:后续u-boot的移植指南中,会介绍该假定的依据。

注4:启动流程分析的过程中,我们会重点解释、归纳出代码中以CONFIG_为前缀的配置项,后续u-boot的移植工作,大部分就是这些配置项的确定过程。

3.1 _start

_start是u-boot启动后的第一个执行地址,对armv8来说,它只是简单的跳转到reset处执行,如下:

/* https://github.com/wowotechX/u-boot/blob/x_integration/arch/arm/cpu/armv8/start.S */

.globl	_start
_start:
b reset
3.2 reset
reset的代码如下:
/*  https://github.com/wowotechX/u-boot/blob/x_integration/arch/arm/cpu/armv8/start.S */
reset:
#ifdef CONFIG_SYS_RESET_SCTRL
bl reset_sctrl
#endif
/*
* Could be EL3/EL2/EL1, Initial State:
* Little Endian, MMU Disabled, i/dCache Disabled
*/
adr x0, vectors
switch_el x1, 3f, 2f, 1f
3: msr vbar_el3, x0
mrs x0, scr_el3
orr x0, x0, #0xf /* SCR_EL3.NS|IRQ|FIQ|EA */
msr scr_el3, x0
msr cptr_el3, xzr /* Enable FP/SIMD */
#ifdef COUNTER_FREQUENCY
ldr x0, =COUNTER_FREQUENCY
msr cntfrq_el0, x0 /* Initialize CNTFRQ */
#endif
b 0f
2: msr vbar_el2, x0
mov x0, #0x33ff
msr cptr_el2, x0 /* Enable FP/SIMD */
b 0f
1: msr vbar_el1, x0
mov x0, #3 << 20
msr cpacr_el1, x0 /* Enable FP/SIMD */
0:

/* Apply ARM core specific erratas */
bl apply_core_errata

/*
* Cache/BPB/TLB Invalidate
* i-cache is invalidated before enabled in icache_enable()
* tlb is invalidated before mmu is enabled in dcache_enable()
* d-cache is invalidated before enabled in dcache_enable()
*/

/* Processor specific initialization */
bl lowlevel_init

#ifdef CONFIG_ARMV8_MULTIENTRY
branch_if_master x0, x1, master_cpu

/*
* Slave CPUs
*/
slave_cpu:
wfe
ldr x1, =CPU_RELEASE_ADDR
ldr x0, [x1]
cbz x0, slave_cpu
br x0 /* branch to the given address */
master_cpu:
/* On the master CPU */
#endif /* CONFIG_ARMV8_MULTIENTRY */

bl _main
主要做如下事情

1)reset SCTRL寄存器

具体可参考reset_sctrl函数,由CONFIG_SYS_RESET_SCTRL控制,一般不需要打开。该配置项的解释如下:

Reset the SCTRL register at the very beginning of execution to avoid interference from stale mappings set up by early firmware/loaders/etc.

http://lists.denx.de/pipermail/u-boot/2015-April/211147.html

2)根据当前的EL级别,配置中断向量、MMU、Endian、i/d Cache等。

3)配置ARM的勘误表

具体可参考apply_core_errata函数,由CONFIG_ARM_ERRATA_XXX控制,在项目的初期,可以不打开,后续根据实际情况打开)。

4)调用lowlevel_init

的功能解释如下(具体可参考u-boot的readme文档):

        - purpose: essential init to permit execution to reach board_init_f()

        - no global_data or BSS

        - there is no stack (ARMv7 may have one but it will soon be removed)

        - must not set up SDRAM or use console

        - must only do the bare minimum to allow execution to continue to

                board_init_f()

        - this is almost never needed

        - return normally from this function

一般情况下,不需要实现。start.S中也有一个WEAK类型的定义,由CONFIG_GICV2 | CONFIG_GICV3控制,一般情况下,没有打开的必要。

5)如果是多CPU的场景,处理其它的CPU的boot

多CPU功能由CONFIG_ARMV8_MULTIENTRY控制,不需要打开。

6)跳转到arm公共的_main中执行

ARM64平台的_main位于arch/arm/lib/crt0_64.S文件中,具体请参考下面的描述。

3.3 _main

crt0是C-runtime Startup Code的简称,意思就是运行C代码之前的准备工作。关于_main函数,arch/arm/lib/crt0_64.S中有非常详细的注释(这一点要给u-boot点100个赞!),大家可以参考。该函数的定义如下:

/* https://github.com/wowotechX/u-boot/blob/x_integration/arch/arm/lib/crt0_64.S */

ENTRY(_main)

/*
* Set up initial C runtime environment and call board_init_f(0).
*/
#if defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_STACK)
ldr x0, =(CONFIG_SPL_STACK)
#else
ldr x0, =(CONFIG_SYS_INIT_SP_ADDR)
#endif
bic sp, x0, #0xf/* 16-byte alignment for ABI compliance */
mov x0, sp
bl board_init_f_alloc_reserve
mov sp, x0
/* set up gd here, outside any C code */
mov x18, x0
bl board_init_f_init_reserve

mov x0, #0
bl board_init_f

#if !defined(CONFIG_SPL_BUILD)
/*
* Set up intermediate environment (new sp and gd) and call
* relocate_code(addr_moni). Trick here is that we'll return
* 'here' but relocated.
*/
ldr x0, [x18, #GD_START_ADDR_SP]/* x0 <- gd-="">start_addr_sp */
bic sp, x0, #0xf/* 16-byte alignment for ABI compliance */
ldr x18, [x18, #GD_BD] /* x18 <- gd-="">bd */
sub x18, x18, #GD_SIZE /* new GD is below bd */

adr lr, relocation_return
ldr x9, [x18, #GD_RELOC_OFF] /* x9 <- gd-="">reloc_off */
add lr, lr, x9/* new return address after relocation */
ldr x0, [x18, #GD_RELOCADDR] /* x0 <- gd-="">relocaddr */
b relocate_code

relocation_return:

/*
* Set up final (full) environment
*/
bl c_runtime_cpu_setup /* still call old routine */

/* TODO: For SPL, call spl_relocate_stack_gd() to alloc stack relocation */

/*
* Clear BSS section
*/
ldr x0, =__bss_start /* this is auto-relocated! */
ldr x1, =__bss_end /* this is auto-relocated! */
mov x2, #0
clear_loop:
str x2, [x0]
add x0, x0, #8
cmp x0, x1
b.lo clear_loop

/* call board_init_r(gd_t *id, ulong dest_addr) */
mov x0, x18 /* gd_t */
ldr x1, [x18, #GD_RELOCADDR] /* dest_addr */
b board_init_r /* PC relative jump */

/* NOTREACHED - board_init_r() does not return */

#endif /* !CONFIG_SPL_BUILD */

ENDPROC(_main)

功能可总结为(大部分翻译自crt0_64.S中的注释):

1)设置C代码的运行环境,为调用board_init_f接口做准备。包括:

a)设置堆栈(C代码的函数调用,堆栈是必须的)。如果当前的编译是SPL(由CONFIG_SPL_BUILD定义),可单独定义堆栈基址(CONFIG_SPL_STACK),否则,通过CONFIG_SYS_INIT_SP_ADDR定义堆栈基址。

b)调用board_init_f_alloc_reserve接口,从堆栈开始的地方,为u-boot中大名鼎鼎的GD ('global data') 数据结构,分配空间。

c)调用board_init_f_init_reserve接口,对GD进行初始化。

2)调用board_init_f函数,完成一些前期的初始化工作,例如:

a)点亮一个Debug用的LED灯,表示u-boot已经活了。

b)初始化DRAM、DDR等system范围的RAM等。

c)计算后续代码需要使用的一些参数,包括relocation destination、the future stack、the future GD location等。

注5:关于u-boot的relocation操作,后续会有专门的文章介绍。

3)如果当前是SPL(由CONFIG_SPL_BUILD控制),则_main函数结束,直接返回。如果是正常的u-boot,则继续执行后续的动作。

4)根据board_init_f指定的参数,执行u-boot的relocation操作。

5)清除BBS段。

6)调用board_init_r函数,执行后续的初始化操作(已经不再本文的讨论范围了,具体请参考后续的分析文章)。

4. 总结

4.1 SPL功能

SPL是Secondary Program Loader的简称,之所以称作secondary,是相对于ROM code来说的。SPL是u-boot中独立的一个代码分支,由CONFIG_SPL_BUILD配置项控制,是为了在正常的u-boot image之外,提供一个独立的、小size的SPL image,通常用于那些SRAM比较小(或者其它限制)、无法直接装载并运行整个u-boot的平台。

如果使用了SPL功能,u-boot的启动流程通常是

ROM code加载SPL并运行;

SPL进行必要的初始化之后,加载u-boot并运行;

u-boot进行后续的操作。

因此,如果使用SPL功能,需要尽可能的减少SPL的代码量,以减小它的size。

4.2 配置项总结

经过第3章的流程分析,我们可以总结出和“平台相关部分的启动流程”有关的配置项,记录如下:

CONFIG_SYS_RESET_SCTRL,控制是否在启动的时候reset SCTRL寄存器,一般不需要打开;

CONFIG_ARM_ERRATA_XXX,控制ARM core的勘误信息,一般不需要打开;

CONFIG_GICV2、CONFIG_GICV3,控制GIC的版本,用到的时候再说明;

CONFIG_ARMV8_MULTIENTRY,控制是否在u-boot中使用多CPU,一般不需要;

CONFIG_SPL_BUILD,是否是能SPL的编译,需要的话可以打开;

CONFIG_SPL_STACK,如果配置了CONFIG_SPL_BUILD,是否为SPL image配置单独的stack(SP基址),如果需要,通过该配置项配置,如果不需要,则使用CONFIG_SYS_INIT_SP_ADDR;

CONFIG_SYS_INIT_SP_ADDR,配置u-boot的stack(SP基址),对于u-boot功能来说,必须提供。

 

问题:

1. uboot的这些CONFIG宏在哪里打开,是否可以使用make menuconfig来控制

在./configs/下有很多板载或者芯片的default config示例。另外是可以使用make menuconfig打开界面的,可以先cp configs/***_deconfig .config, 然后make menuconfig即可