解决R语言 数据不平衡的问题

时间:2022-06-01 12:53:15

R语言解决数据不平衡问题

一、项目环境

开发工具:RStudio

R:3.5.2

相关包:dplyr、ROSE、DMwR

二、什么是数据不平衡?为什么要处理数据不平衡?

首先我们要知道的第一个问题就是“什么是数据不平衡”,从字面意思上进行解释就是数据分布不均匀。在我们做有监督学习的时候,数据中有一个类的比例远大于其他类,或者有一个类的比值远小于其他类时,我们就可以认为这个数据存在数据不平衡问题。

那么这样的一个问题会对我们后续的分析工作带来怎样的影响呢?我举个简单的例子,或许大家就明白了。

假设我们现在需要训练一个模型来分辨人群中那个人是*。那么现在给到我们1万个人员的数据,在做分析之前其实我们就很清楚,一群人中*的比例肯定是要远小于普通人的比例的。

那么假如在这1万个人中只有一个是*,那么*与正常人的比例就是 9999 : 1 。

那么如果我们不进行任何处理就直接进行有监督学习的话,那么模型只需要将所有人数据都分类为正常人,模型的准确率就能达到99.99%。而这样的模型显然是没有意义的。

因为基本上说有可能存在的*的特征基本都被模型给忽略了,这也就说明了为什么要处理数据不平衡问题。

三、 常见的数据不平衡处理方法

以下是几种比较常见的处理数据不平衡的方法:

1、欠采样法(Undersampling)

2、过采样法(Oversampling)

3、人工数据合成法(Synthetic Data Generation)

4、代价敏感学习法(Cose Sensitive Learning)

【注】:本文主要以实现为主,因此不对上述方法进行过多的讲解。

​ 在处理数据之前,我们先看一下需要处理的数据分布的情况。

?
1
2
3
load("C:/Users/User/Desktop/data.RData")
table(data$classification)
prop.table(table(data$classification))

> table(data$classification)

-8 1 2 3 4 5

12 104 497 1158 4817 1410

> prop.table(table(data$classification))

-8 1 2 3 4 5

0.001500375 0.013003251 0.062140535 0.144786197 0.602275569 0.176294074

1、 欠采样

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
######### 方法一 #########
library(ROSE)
# 由于是多分类问题,我们先提取数据中比例最大的类和比例最小的类
# 进行平衡(转化为二分类问题)
test <- data[which(data$classification == -8 | data$classification == 4),]
# 将分类结果转化为因子型(不然会报错)
test$classification <- as.factor(test$classification)
# 进行欠采样
# 其中 method = "under" 表示采用的方法为“欠采样”
# N = 40 表示最终整个数据集的数量
# seed 随机种子,为了保留对样本的追踪
under <- ovun.sample(classification ~ ., test, method = "under", N = 40, seed = 1)$data
# 查看结果
table(under$classification)

> table(under$classification)

4 -8

28 12

?
1
2
3
4
5
6
7
8
9
10
11
12
######### 方法二 #########
library(dplyr)
# 由于是多分类问题,我们先提取数据中比例最大的类和比例最小的类
# 进行平衡(转化为二分类问题)
test <- data[which(data$classification == -8 | data$classification == 4),]
# 提取大比例类
test1 <- test[which(test$classification == 4),]
# 将大比例类的数量降为12个
down <- sample_n(test1, 12, replace = TRUE)
# 将欠采样后的类进行合并
down <- rbind(test[which(test$classification == -8), ],down)
table(down$classification)

> table(down$classification)

-8 4

12 12

【注】:欠采样是无放回的采样。

2、 过采样

?
1
2
3
4
5
6
7
######### 方法一 #########
library(ROSE)
test <- data[which(data$classification == -8 | data$classification == 4),]
test$classification <- as.factor(test$classification)
# 实现上大致与欠采样相同,只有类型 method 改成了 "over",同时没有限制总数量
under <- ovun.sample(classification ~ ., test, method = "over", seed = 1)$data
table(under$classification)

> table(under$classification)

4 -8

4817 4785

?
1
2
3
4
5
6
7
8
9
10
######### 方法二 #########
library(dplyr)
test <- data[which(data$classification == -8 | data$classification == 4),]
# 提取小比例类
test1 <- test[which(test$classification == -8),]
# 将小比例类的数量降为4817个(与大比例类相同)
# 这里使用的过采样方法是随机复制小比例类中的数据,将其扩充到指定数量
down <- sample_n(test1, 4817, replace = TRUE)
down <- rbind(test[which(test$classification == 4), ],down)
table(down$classification)

> table(down$classification)

-8 4

4817 4817

3、人工数据合成法(Synthetic Data Generation)

?
1
2
3
4
5
6
7
8
9
10
11
######### 方法一 #########
library(ROSE)
# 由于是多分类问题,我们先提取数据中比例最大的类和比例最小的类
# 进行平衡(转化为二分类问题)
test <- data[which(data$classification == -8 | data$classification == 4),]
# 将分类结果转化为因子型(不然会报错)
test$classification <- as.factor(test$classification)
# ROSE提供了ROSE()函数来合成人工数据
rose <- ROSE(classification ~ ., test, seed = 1)$data
# 查看结果
table(rose$classification)

> table(rose$classification)

4 -8

2483 2346

?
1
2
3
4
5
6
7
8
9
10
######### 方法二 #########
library(DMwR)
test <- data[which(data$classification == -8 | data$classification == 4),]
test$classification <- as.factor(test$classification)
# perc.over: 如 perc.over = n,小比例类的个数变为 (n/100)a + a 个数据(a为小比例类原始数量)
# perc.under: 如 perc.under = m,大比例类的个数变为((nm)/100)a个
# 因此本次案例中,小比例类的个数变为(3500/100)*12 + 12 = 432个
# 大比例类的个数变为((3500*300)/100^2)*12 = 1260个
down <- SMOTE(classification ~ ., test, perc.over = 3500, perc.under = 300)
table(down$classification)

> table(down$classification)

-8 4

432 1260

【注】:相较于前两种方法而言,人工合成法既不会像过采样容易导致过拟合问题,也不会出现欠采样大量丢失信息的问题。

4、代价敏感学习法(Cose Sensitive Learning)

【注】:还没想好怎么写。。。。。

三、 结语

本文之所以都只拿两个分类在进行分析,是因为上面提到的用于解决数据不平衡问题的函数,基本上都是针对二分类问题的。当导入的数据中有大于两个分类时,函数就会报错。

但是在实际分析的过程中,其实我们更经常遇到的时多分类问题,这是我们就需要将多分类问题转化为二分类问题,将各个分类两两进行比较才能更好的解决数据不平衡的问题。

原文链接:https://blog.csdn.net/qq_26867967/article/details/94971773