一、题目
下面再加入缺失的情况来继续深入探讨,同样还是如习题1.6的构造方式来加入缺失值,其中a=2, b = 0
我们将进行如下几种操作:
二、解答
a)Bootstrap与Jackknife进行估计
首先构建生成数据函数。
# 生成数据 # 生成数据 GenerateData <- function(a = 0, b = 0) { y <- matrix(nrow = 3, ncol = 100) z <- matrix(rnorm(300), nrow = 3) y[1, ] <- 1 + z[1, ] y[2, ] <- 5 + 2 * z[1, ] + z[2, ] u <- a * (y[1, ] - 1) + b * (y[2, ] - 5) + z[3, ] # m2 <- 1 * (u < 0) y[3, ] <- y[2, ] y[3, u < 0] <- NA dat_comp <- data.frame(y1 = y[1, ], y2 = y[2, ]) dat_incomp <- data.frame(y1 = y[1, ], y2 = y[3, ]) # dat_incomp <- na.omit(dat_incomp) return(list(dat_comp = dat_comp, dat_incomp = dat_incomp)) }
Bootstrap与Jackknife的函数:
Bootstrap1 <- function(Y, B = 200, fun) { Y_len <- length(Y) mat_boots <- matrix(sample(Y, Y_len * B, replace = T), nrow = B, ncol = Y_len) statis_boots <- apply(mat_boots, 1, fun) boots_mean <- mean(statis_boots) boots_sd <- sd(statis_boots) return(list(mean = boots_mean, sd = boots_sd)) } Jackknife1 <- function(Y, fun) { Y_len <- length(Y) mat_jack <- sapply(1:Y_len, function(i) Y[-i]) redu_samp <- apply(mat_jack, 2, fun) jack_mean <- mean(redu_samp) jack_sd <- sqrt(((Y_len - 1) ^ 2 / Y_len) * var(redu_samp)) return(list(mean = jack_mean, sd = jack_sd)) }
进行重复试验所需的函数:
RepSimulation <- function(seed = 2018, fun) { set.seed(seed) dat <- GenerateData() dat_comp_y2 <- dat$dat_comp$y2 boots_sd <- Bootstrap1(dat_comp_y2, B = 200, fun)$sd jack_sd <- Jackknife1(dat_comp_y2, fun)$sd return(c(boots_sd = boots_sd, jack_sd = jack_sd)) }
下面重复100次实验进行 Y2的均值与变异系数标准差的估计:
nrep <- 100 ## 均值 fun = mean mat_boots_jack <- sapply(1:nrep, RepSimulation, fun) apply(mat_boots_jack, 1, function(x) paste(round(mean(x), 3), '±', round(sd(x), 3)))
## 变异系数 fun = function(x) sd(x) / mean(x) mat_boots_jack <- sapply(1:nrep, RepSimulation, fun) apply(mat_boots_jack, 1, function(x) paste(round(mean(x), 3), '±', round(sd(x), 3)))
从上面可以发现,Bootstrap与Jackknife两者估计结果较为相近,其中对均值标准差的估计,Jackknife的方差更小。这其实较为符合常识:Jackknife估计每次只取出一个样本,用剩下的样本来作为样本整体;而Bootstrap每次都会比较随机地重抽样,随机性相对较高,所以重复100次模拟实验,导致其方差相对较大。
下面我们用计算公式来进行推导。
b)均值与变异系数(大样本)的标准差解析式推导与计算
均值
变异系数(大样本近似)
## 变异系数 sd(sapply(1:10000, function(x) { set.seed(x) dat <- GenerateData(a = 0, b = 0) sd(dat$dat_comp$y2) / mean(dat$dat_comp$y2) }))
变异系数大样本近似值为:0.03717648,说明前面的Bootstrap与Jackknife两种方法估计的都较为准确。
c)缺失插补后的Bootstrap与Jackknife
构造线性填补的函数,并进行线性填补。
DatImputation <- function(dat_incomp) { dat_imp <- dat_incomp lm_model = lm(y2 ~ y1, data = na.omit(dat_incomp)) # 找出y2缺失对应的那部分data na_ind = is.na(dat_incomp$y2) na_dat = dat_incomp[na_ind, ] # 将缺失数据进行填补 dat_imp[na_ind, 'y2'] = predict(lm_model, na_dat) return(dat_imp) } dat <- GenerateData(a = 2, b = 0) dat_imp <- DatImputation(dat$dat_incomp)
fun = mean Bootstrap1(dat_imp$y2, B = 200, fun)$sd
Jackknife1(dat_imp$y2, fun)$sd
fun = function(x) sd(x) / mean(x) Bootstrap1(dat_imp$y2, B = 200, fun)$sd
Jackknife1(dat_imp$y2, fun)$sd
Bootstrap与Jackknife的填补结果,很大一部分是由于数据的缺失会造成距离真实值较远。但单从两种方法估计出来的值比较接近。
c)缺失插补前的Bootstrap与Jackknife
先构建相关的函数:
Array2meancv <- function(j, myarray) { dat_incomp <- as.data.frame(myarray[, j, ]) names(dat_incomp) <- c('y1', 'y2') dat_imp <- DatImputation(dat_incomp) y2_mean <- mean(dat_imp$y2) y2_cv <- sd(dat_imp$y2) / y2_mean return(c(mean = y2_mean, cv = y2_cv)) } Bootstrap_imp <- function(dat_incomp, B = 200) { n <- nrow(dat_incomp) array_boots <- array(dim = c(n, B, 2)) mat_boots_ind <- matrix(sample(1:n, n * B, replace = T), nrow = B, ncol = n) array_boots[, , 1] <- sapply(1:B, function(i) dat_incomp$y1[mat_boots_ind[i, ]]) array_boots[, , 2] <- sapply(1:B, function(i) dat_incomp$y2[mat_boots_ind[i, ]]) mean_cv_imp <- sapply(1:B, Array2meancv, array_boots) boots_imp_mean <- apply(mean_cv_imp, 1, mean) boots_imp_sd <- apply(mean_cv_imp, 1, sd) return(list(mean = boots_imp_mean, sd = boots_imp_sd)) } Jackknife_imp <- function(dat_incomp) { n <- nrow(dat_incomp) array_jack <- array(dim = c(n - 1, n, 2)) array_jack[, , 1] <- sapply(1:n, function(i) dat_incomp[-i, 'y1']) array_jack[, , 2] <- sapply(1:n, function(i) dat_incomp[-i, 'y2']) mean_cv_imp <- sapply(1:n, Array2meancv, array_jack) jack_imp_mean <- apply(mean_cv_imp, 1, mean) jack_imp_sd <- apply(mean_cv_imp, 1, function(x) sqrt(((n - 1) ^ 2 / n) * var(x))) return(list(mean = jack_imp_mean, sd = jack_imp_sd)) }
然后看看两种方式估计出来的结果:
Bootstrap_imp(dat$dat_incomp)$sd
Jackknife_imp(dat$dat_incomp)$sd
缺失插补前进行Bootstrap与Jackknife也还是有一定的误差,标准差都相对更大,表示波动会比较大。具体表现情况下面我们多次重复模拟实验,通过90%置信区间来看各个方法的优劣。
d)比较各种方式的90%置信区间情况(重复100次实验)
RepSimulationCI <- function(seed = 2018, stats = 'mean') { mean_true <- 5 cv_true <- sqrt(5) / 5 myjudge <- function(x, value) { return(ifelse((x$mean - qnorm(0.95) * x$sd < value) & (x$mean + qnorm(0.95) * x$sd > value), 1, 0)) } if(stats == 'mean') { fun = mean value = mean_true } else if(stats == 'cv') { fun = function(x) sd(x) / mean(x) value = cv_true } set.seed(seed) boots_after_ind <- boots_before_ind <- jack_after_ind <- jack_before_ind <- 0 dat <- GenerateData(a = 2, b = 0) dat_incomp <- dat$dat_incomp # after imputation dat_imp <- DatImputation(dat_incomp) boots_after <- Bootstrap1(dat_imp$y2, B = 200, fun) boots_after_ind <- myjudge(boots_after, value) jack_after <- Jackknife1(dat_imp$y2, fun) jack_after_ind <- myjudge(jack_after, value) # before imputation boots_before <- Bootstrap_imp(dat_incomp) jack_before <- Jackknife_imp(dat_incomp) if(stats == 'mean') { boots_before$mean <- boots_before$mean[1] boots_before$sd <- boots_before$sd[1] jack_before$mean <- jack_before$mean[1] jack_before$sd <- jack_before$sd[1] } else if(stats == 'cv') { boots_before$mean <- boots_before$mean[2] boots_before$sd <- boots_before$sd[2] jack_before$mean <- jack_before$mean[2] jack_before$sd <- jack_before$sd[2] } boots_before_ind <- myjudge(boots_before, value) jack_before_ind <- myjudge(jack_before, value) return(c(boots_after = boots_after_ind, boots_before = boots_before_ind, jack_after = jack_after_ind, jack_before = jack_before_ind)) }
重复100次实验,均值情况:
nrep <- 100 result_mean <- apply(sapply(1:nrep, RepSimulationCI, 'mean'), 1, sum) names(result_mean) <- c('boots_after', 'boots_before', 'jack_after', 'jack_before') result_mean
变异系数情况:
result_cv <- apply(sapply(1:nrep, RepSimulationCI, 'cv'), 1, sum) names(result_cv) <- c('boots_after', 'boots_before', 'jack_after', 'jack_before') result_cv
上面的数字越表示90%置信区间覆盖真实值的个数,数字越大表示覆盖的次数越多,也就说明该方法会相对更好。
填补之前进行Bootstrap或Jackknife
无论是均值还是变异系数,通过模拟实验都能看出,在填补之前进行Bootstrap或Jackknife,其估计均会远优于在填补之后进行Bootstrap或Jackknife。而具体到Bootstrap或Jackknife,这两种方法相差无几。
填补之后进行Bootstrap或Jackknife
在填补之后进行Bootstrap或Jackknife,效果都会很差,其实仔细思考后也能够理解,本身缺失了近一半的数据,然后填补会带来很大的偏差,此时我们再从中抽样,有很大可能抽出来的绝大多数都是原本填补的有很大偏差的样本,这样估计就会更为不准了。
当然,从理论上说,填补之前进行Bootstrap或Jackknife是较为合理的,这样对每个Bootstrap或Jackknife样本,都可以用当前的观测值去填补当前的缺失值,这样每次填补可能花费的时间将对较长,但实际却更有效。
以上就是R语言学习笔记缺失数据的Bootstrap与Jackknife方法的详细内容,更多关于R语言学习笔记的资料请关注服务器之家其它相关文章!
原文链接:https://kanny.blog.csdn.net/article/details/83216997