A Knight's Journey_DFS

时间:2023-03-08 22:42:57

Description

A Knight's Journey_DFSBackground 
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey 
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?

Problem 
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.

Input

The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number. 
If no such path exist, you should output impossible on a single line.

Sample Input

3
1 1
2 3
4 3

Sample Output

Scenario #1:
A1 Scenario #2:
impossible Scenario #3:
A1B3C1A2B4C2A3B1C3A4B2C4

【题意】给出m*n的方阵(但输入时先输入的是n,再输入m),问马是否能走遍棋盘,输出字典序的第一种路径。

【思路】用mp[i][0]表示第i步所在那个格子的横坐标,用mp[i][1]表示第i步所在那个格子的纵坐标。

字典序的话,注意di数组的顺序。用一个dfs就好啦。

#include <iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int N=;
int vis[N][N];
int mp[N][];
int n,m;
bool flag;
int di[][]={-,-,-,,-,-,-,,,-,,,,-,,};
bool go(int x,int y)
{
if(x<||x>=n||y<||y>=m) return false;
else return true;
} void dfs(int i,int j,int k)
{
if(k==n*m)
{
for(int i=;i<k;i++)
{
printf("%c%d",mp[i][]+'A',mp[i][]+);
}
printf("\n");
flag=true;
// return ;
}
else
for(int x=;x<;x++)
{
int xx=i+di[x][];
int yy=j+di[x][];
if(!vis[xx][yy]&&go(xx,yy)&&!flag)
{
vis[xx][yy]=;
mp[k][]=xx;
mp[k][]=yy;
dfs(xx,yy,k+);
vis[xx][yy]=; }
}
} int main()
{
int t,cas=;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&m,&n);
memset(vis,,sizeof(vis));
vis[][]=;
mp[][]=;
mp[][]=;
flag=false;
printf("Scenario #%d:\n",cas++);
dfs(,,); if(!flag) printf("impossible\n");
puts("");
}
return ;
}