Apache Beam发布的第一个稳定版本2.0.0,想比较于之前的版本来说,API改变了很多,比如读取HDFS文件的API,以前的读取文件的类已经不适用了,改为使用普通的Text.IO就能读取HDFS文件,前提是建立了HDFS之间的连接,以前用的版本是Apache Beam 2.1.0,如有问题或者改进,可以在留言区给我留言
package com.fzu.test.kafka_beam_test;
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import java.util.ArrayList;
import java.util.List;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.FileSystems;
import org.apache.beam.sdk.io.TextIO;
import org.apache.beam.sdk.io.hdfs.HadoopFileSystemOptions;
import org.apache.beam.sdk.metrics.Counter;
import org.apache.beam.sdk.metrics.Metrics;
import org.apache.beam.sdk.options.Default;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.Validation.Required;
import org.apache.beam.sdk.transforms.Count;
import org.apache.beam.sdk.transforms.DoFn;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.transforms.PTransform;
import org.apache.beam.sdk.transforms.ParDo;
import org.apache.beam.sdk.transforms.SimpleFunction;
import org.apache.beam.sdk.values.KV;
import org.apache.beam.sdk.values.PCollection;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hdfs.DistributedFileSystem;
import com.fzu.test.beam.examples.ExampleUtils;
import com.fzu.test.beam.examples.WordCount;
import com.google.common.collect.ImmutableList;
public class HdfsReaderTest {
private static class PrintFn<T> extends DoFn<T, T> {
@ProcessElement
public void processElement(ProcessContext c) throws Exception {
System.out.println(c.element().toString());
}
}
static class ExtractWordsFn extends DoFn<String, String> {
private final Counter emptyLines = Metrics
.counter(ExtractWordsFn.class, "emptyLines");
@ProcessElement
public void processElement(ProcessContext c) {
if (c.element().trim().isEmpty()) {
emptyLines.inc();
}
// Split the line into words.
String[] words = c.element().split(ExampleUtils.TOKENIZER_PATTERN);
// Output each word encountered into the output PCollection.
for (String word : words) {
if (!word.isEmpty()) {
c.output(word);
}
}
}
}
/**
* A SimpleFunction that converts a Word and Count into a printable string.
*/
public static class FormatAsTextFn extends SimpleFunction<KV<String, Long>, String> {
@Override
public String apply(KV<String, Long> input) {
return input.getKey() + ": " + input.getValue();
}
}
public static class CountWords extends PTransform<PCollection<String>, PCollection<KV<String, Long>>> {
@Override
public PCollection<KV<String, Long>> expand(PCollection<String> lines) {
// Convert lines of text into individual words.
PCollection<String> words = lines.apply(ParDo.of(new ExtractWordsFn()));
// Count the number of times each word occurs.
PCollection<KV<String, Long>> wordCounts = words
.apply(Count.<String>perElement());
return wordCounts;
}
}
public static void main(String[] args) {
// HadoopFileSystemOptions options = PipelineOptionsFactory
// //.fromArgs("--hdfsConfiguration=[{\"fs.default.name\": \"hdfs://172.17.168.96:9000\"}]")
// .create() .as(HadoopFileSystemOptions.class);
//或者使用以下方式配置
HadoopFileSystemOptions options = PipelineOptionsFactory.create().as(HadoopFileSystemOptions.class);Configuration conf = new Configuration();
conf.set("fs.default.name","hdfs://172.17.168.96:9000");
conf.set("fs.hdfs.impl", "org.apache.hadoop.hdfs.DistributedFileSystem");
List<Configuration> list = new ArrayList<Configuration>();
list.add(conf);
options.setHdfsConfiguration(list);
Pipeline p = Pipeline.create(options);
System.out.println(options);
p.apply("ReadLines", TextIO.read().
from("hdfs://172.17.168.96:9000/user/hadoop/beamtest1/test.txt"))
.apply(new CountWords())
.apply(MapElements.via(new FormatAsTextFn()))
.apply(ParDo.of(new PrintFn<>()));
p.run().waitUntilFinish();
}
}
控制台输出: