Two elements of a binary search tree (BST) are swapped by mistake.
Recover the tree without changing its structure.
Note:
A solution using O(n) space is pretty straight forward. Could you devise a constant space solution?
分析:http://www.cnblogs.com/yuzhangcmu/p/4208319.html
具体的思路,还是通过中序遍历,只不过,不需要存储每个节点,只需要存一个前驱即可。
例如1,4,3,2,5,6
1.当我们读到4的时候,发现是正序的,不做处理
2.但是遇到3时,发现逆序,将4存为第一个错误节点,3存为第二个错误节点
3.继续往后,发现3,2又是逆序了,那么将第2个错误节点更新为2
如果是这样的序列:1,4,3,5,6同上,得到逆序的两个节点为4和3。
========================================
这里我们补充一下,为什么要替换第二个节点而不是第一个节点:
e.g. The correct BST is below:
The inorder traversal is : 1 3 4 6 7 8 10 13 14
Find the place which the order is wrong.
Wrong order: 1 3 8 6 7 4 10 13 14
FIND: 8 6
Then we find: 7 4
8, 6 是错误的序列, 但是,7,4也是错误的序列。
因为8,6前面的序列是正确的,所以8,6一定是后面的序列交换来的。
而后面的是比较大的数字,也就是说8一定是被交换过来的。而7,4
中也应该是小的数字4是前面交换过来的。
用反证法来证明:
假设:6是后面交换过来的
推论: 那么8比6还大,那么8应该也是后面交换来的,
这样起码有3个错误的数字了
而题目是2个错误的数字,得证,只应该是8是交换过来的。
结论就是:我们需要交换的是:8, 4.
public class Solution {
TreeNode pre = null, first = null,second = null; public void recoverTree(TreeNode root) {
inOrder(root);
int tmp = first.val;
first.val = second.val;
second.val = tmp;
} public void inOrder(TreeNode root) {
if (root == null) return;
inOrder(root.left);
if (pre != null && pre.val > root.val) {
if (first == null) {
first = pre;
second = root;
} else {
second = root;
}
}
pre = root;
inOrder(root.right);
}
}