This is the opposite of Turning a Hash of Arrays into an Array of Hashes in Ruby.
这与将数组的散列转换为Ruby中的散列的数组是相反的。
Elegantly and/or efficiently turn an array of hashes into a hash where the values are arrays of all values:
优雅和/或有效地将一个散列数组转换为散列,其中的值是所有值的数组:
hs = [
{ a:1, b:2 },
{ a:3, c:4 },
{ b:5, d:6 }
]
collect_values( hs )
#=> { :a=>[1,3], :b=>[2,5], :c=>[4], :d=>[6] }
This terse code almost works, but fails to create an array when there are no duplicates:
这个简洁的代码几乎可以工作,但是当没有重复的时候却不能创建一个数组:
def collect_values( hashes )
hashes.inject({}){ |a,b| a.merge(b){ |_,x,y| [*x,*y] } }
end
collect_values( hs )
#=> { :a=>[1,3], :b=>[2,5], :c=>4, :d=>6 }
This code works, but can you write a better version?
这段代码可以工作,但是你能写出更好的版本吗?
def collect_values( hashes )
# Requires Ruby 1.8.7+ for Object#tap
Hash.new{ |h,k| h[k]=[] }.tap do |result|
hashes.each{ |h| h.each{ |k,v| result[k]<<v } }
end
end
Solutions that only work in Ruby 1.9 are acceptable, but should be noted as such.
只在Ruby 1.9中工作的解决方案是可以接受的,但应该注意这一点。
Here are the results of benchmarking the various answers below (and a few more of my own), using three different arrays of hashes:
下面是对下面各种答案(以及我自己的一些答案)进行基准测试的结果,使用三个不同的散列数组:
-
one where each hash has distinct keys, so no merging ever occurs:
[{:a=>1}, {:b=>2}, {:c=>3}, {:d=>4}, {:e=>5}, {:f=>6}, {:g=>7}, ...]
一个每个散列有不同的钥匙,所以从来没有合并发生:[{:1 = > },{:b = > 2 },{:c = > 3 },{:d = > 4 },{:e = > 5 },{:f = > 6 },{:7 g = > },…]
-
one where every hash has the same key, so maximum merging occurs:
[{:a=>1}, {:a=>2}, {:a=>3}, {:a=>4}, {:a=>5}, {:a=>6}, {:a=>7}, ...]
在每一个散列有相同的一个关键,所以最大的合并发生:[{:1 = > },{:= > 2 },{:3 = > },{:4 = > },{:5 = > },{:= > 6 },{:7 = > },…]
- and one that is a mix of unique and shared keys:
[{:c=>1}, {:d=>1}, {:c=>2}, {:f=>1}, {:c=>1, :d=>1}, {:h=>1}, {:c=>3}, ...]
- 和一个独特的和共享密钥:[{:c = > 1 },{:d = > 1 },{:c = > 2 },{:f = > 1 },{:c = > 1,:d = > 1 },{:h = > 1 },{:c = > 3 },…]
user system total real Phrogz 2a 0.577000 0.000000 0.577000 ( 0.576000) Phrogz 2b 0.624000 0.000000 0.624000 ( 0.620000) Glenn 1 0.640000 0.000000 0.640000 ( 0.641000) Phrogz 1 0.671000 0.000000 0.671000 ( 0.668000) Michael 1 0.702000 0.000000 0.702000 ( 0.700000) Michael 2 0.717000 0.000000 0.717000 ( 0.726000) Glenn 2 0.765000 0.000000 0.765000 ( 0.764000) fl00r 0.827000 0.000000 0.827000 ( 0.836000) sawa 0.874000 0.000000 0.874000 ( 0.868000) Tokland 1 0.873000 0.000000 0.873000 ( 0.876000) Tokland 2 1.077000 0.000000 1.077000 ( 1.073000) Phrogz 3 2.106000 0.093000 2.199000 ( 2.209000)
The fastest code is this method that I added:
最快的代码是我添加的方法:
def collect_values(hashes)
{}.tap{ |r| hashes.each{ |h| h.each{ |k,v| (r[k]||=[]) << v } } }
end
I've accepted "glenn mcdonald's answer" as it was competitive in terms of speed, reasonably terse, but (most importantly) because it pointed out the danger of using a Hash with a self-modifying default proc for convenient construction, as this may introduce bad changes when the user is indexing it later on.
我接受了“glenn mcdonald's answer”,因为它在速度上具有竞争力,而且相当简洁,但(最重要的)是因为它指出了使用带有自修改默认proc的散列进行方便构建的危险,因为这可能会在用户稍后进行索引时引入糟糕的更改。
Finally, here's the benchmark code, in case you want to run your own comparisons:
最后,这里是基准代码,如果您想进行您自己的比较:
require 'prime' # To generate the third hash
require 'facets' # For tokland1's map_by
AZSYMBOLS = (:a..:z).to_a
TESTS = {
'26 Distinct Hashes' => AZSYMBOLS.zip(1..26).map{|a| Hash[*a] },
'26 Same-Key Hashes' => ([:a]*26).zip(1..26).map{|a| Hash[*a] },
'26 Mixed-Keys Hashes' => (2..27).map do |i|
factors = i.prime_division.transpose
Hash[AZSYMBOLS.values_at(*factors.first).zip(factors.last)]
end
}
def phrogz1(hashes)
Hash.new{ |h,k| h[k]=[] }.tap do |result|
hashes.each{ |h| h.each{ |k,v| result[k]<<v } }
end
end
def phrogz2a(hashes)
{}.tap{ |r| hashes.each{ |h| h.each{ |k,v| (r[k]||=[]) << v } } }
end
def phrogz2b(hashes)
hashes.each_with_object({}){ |h,r| h.each{ |k,v| (r[k]||=[]) << v } }
end
def phrogz3(hashes)
result = hashes.inject({}){ |a,b| a.merge(b){ |_,x,y| [*x,*y] } }
result.each{ |k,v| result[k] = [v] unless v.is_a? Array }
end
def glenn1(hs)
hs.reduce({}) {|h,pairs| pairs.each {|k,v| (h[k] ||= []) << v}; h}
end
def glenn2(hs)
hs.map(&:to_a).flatten(1).reduce({}) {|h,(k,v)| (h[k] ||= []) << v; h}
end
def fl00r(hs)
h = Hash.new{|h,k| h[k]=[]}
hs.map(&:to_a).flatten(1).each{|v| h[v[0]] << v[1]}
h
end
def sawa(a)
a.map(&:to_a).flatten(1).group_by{|k,v| k}.each_value{|v| v.map!{|k,v| v}}
end
def michael1(hashes)
h = Hash.new{|h,k| h[k]=[]}
hashes.each_with_object(h) do |h, result|
h.each{ |k, v| result[k] << v }
end
end
def michael2(hashes)
h = Hash.new{|h,k| h[k]=[]}
hashes.inject(h) do |result, h|
h.each{ |k, v| result[k] << v }
result
end
end
def tokland1(hs)
hs.map(&:to_a).flatten(1).map_by{ |k, v| [k, v] }
end
def tokland2(hs)
Hash[hs.map(&:to_a).flatten(1).group_by(&:first).map{ |k, vs|
[k, vs.map{|o|o[1]}]
}]
end
require 'benchmark'
N = 10_000
Benchmark.bm do |x|
x.report('Phrogz 2a'){ TESTS.each{ |n,h| N.times{ phrogz2a(h) } } }
x.report('Phrogz 2b'){ TESTS.each{ |n,h| N.times{ phrogz2b(h) } } }
x.report('Glenn 1 '){ TESTS.each{ |n,h| N.times{ glenn1(h) } } }
x.report('Phrogz 1 '){ TESTS.each{ |n,h| N.times{ phrogz1(h) } } }
x.report('Michael 1'){ TESTS.each{ |n,h| N.times{ michael1(h) } } }
x.report('Michael 2'){ TESTS.each{ |n,h| N.times{ michael2(h) } } }
x.report('Glenn 2 '){ TESTS.each{ |n,h| N.times{ glenn2(h) } } }
x.report('fl00r '){ TESTS.each{ |n,h| N.times{ fl00r(h) } } }
x.report('sawa '){ TESTS.each{ |n,h| N.times{ sawa(h) } } }
x.report('Tokland 1'){ TESTS.each{ |n,h| N.times{ tokland1(h) } } }
x.report('Tokland 2'){ TESTS.each{ |n,h| N.times{ tokland2(h) } } }
x.report('Phrogz 3 '){ TESTS.each{ |n,h| N.times{ phrogz3(h) } } }
end
8 个解决方案
#1
19
Take your pick:
随便你挑,
hs.reduce({}) {|h,pairs| pairs.each {|k,v| (h[k] ||= []) << v}; h}
hs.map(&:to_a).flatten(1).reduce({}) {|h,(k,v)| (h[k] ||= []) << v; h}
I'm strongly against messing with the defaults for hashes, as the other suggestions do, because then checking for a value modifies the hash, which seems very wrong to me.
我强烈反对像其他建议那样对散列使用默认值,因为检查值会修改散列,这在我看来是非常错误的。
#2
3
h = Hash.new{|h,k| h[k]=[]}
hs.map(&:to_a).flatten(1).each{|v| h[v[0]] << v[1]}
#3
1
How's this?
这是如何?
def collect_values(hashes)
h = Hash.new{|h,k| h[k]=[]}
hashes.each_with_object(h) do |h, result|
h.each{ |k, v| result[k] << v }
end
end
Edit - Also possible with inject, but IMHO not as nice:
编辑——也可以通过注入,但IMHO没有那么好:
def collect_values( hashes )
h = Hash.new{|h,k| h[k]=[]}
hashes.inject(h) do |result, h|
h.each{ |k, v| result[k] << v }
result
end
end
#4
1
Same with some other answers using map(&:to_a).flatten(1)
. The problem is how to modify the values of the hash. I used the fact that arrays are mutable.
使用map(&:to_a).flatten(1)也一样。问题是如何修改散列的值。我利用了数组是可变的这一事实。
def collect_values a
a.map(&:to_a).flatten(1).group_by{|k, v| k}.
each_value{|v| v.map!{|k, v| v}}
end
#5
1
Facet's Enumerable#map_by comes in handy for these cases. This implementation will be no doubt slower than others, but modular and compact code is always easier to maintain:
Facet的可枚举的#map_by对于这些情况非常有用。这个实现无疑比其他的要慢,但是模块化和紧凑的代码总是更容易维护:
require 'facets'
hs.flat_map(&:to_a).map_by { |k, v| [k, v] }
#=> {:b=>[2, 5], :d=>[6], :c=>[4], :a=>[1, 3]
#6
1
I thought it might be interesting to compare the winner:
我认为比较获胜者可能会很有趣:
def phrogz2a(hashes)
{}.tap{ |r| hashes.each{ |h| h.each{ |k,v| (r[k]||=[]) << v } } }
end
with a slight variant:
轻微的变体:
def phrogz2ai(hashes)
Hash.new {|h,k| h[k]=[]}.tap {|r| hashes.each {|h| h.each {|k,v| r[k] << v}}}
end
because one can often employ either approach (typically to create an empty array or hash).
因为通常可以使用这两种方法(通常创建空数组或散列)。
Using Phrogz's benchmark code, here's how they compare here:
使用Phrogz的基准代码,以下是他们的比较:
user system total real
Phrogz 2a 0.440000 0.010000 0.450000 ( 0.444435)
Phrogz 2ai 0.580000 0.010000 0.590000 ( 0.580248)
#7
0
What about this one?
这一个怎么样?
hs.reduce({}, :merge)
shortest! But performance is pretty bad:
最短!但是表现很差:
user system total real
Phrogz 2a 0.240000 0.010000 0.250000 ( 0.247337)
Phrogz 2b 0.280000 0.000000 0.280000 ( 0.274985)
Glenn 1 0.290000 0.000000 0.290000 ( 0.290370)
Phrogz 1 0.310000 0.000000 0.310000 ( 0.315548)
Michael 1 0.360000 0.000000 0.360000 ( 0.356760)
Michael 2 0.360000 0.000000 0.360000 ( 0.360119)
Glenn 2 0.370000 0.000000 0.370000 ( 0.369354)
fl00r 0.390000 0.000000 0.390000 ( 0.385883)
sawa 0.410000 0.000000 0.410000 ( 0.408190)
Tokland 1 0.410000 0.000000 0.410000 ( 0.410097)
Tokland 2 0.490000 0.000000 0.490000 ( 0.497325)
Ich 1.410000 0.000000 1.410000 ( 1.413176) # <<-- new
Phrogz 3 1.760000 0.010000 1.770000 ( 1.762979)
#8
-2
[{'a' => 1}, {'b' => 2}, {'c' => 3}].reduce Hash.new, :merge
#1
19
Take your pick:
随便你挑,
hs.reduce({}) {|h,pairs| pairs.each {|k,v| (h[k] ||= []) << v}; h}
hs.map(&:to_a).flatten(1).reduce({}) {|h,(k,v)| (h[k] ||= []) << v; h}
I'm strongly against messing with the defaults for hashes, as the other suggestions do, because then checking for a value modifies the hash, which seems very wrong to me.
我强烈反对像其他建议那样对散列使用默认值,因为检查值会修改散列,这在我看来是非常错误的。
#2
3
h = Hash.new{|h,k| h[k]=[]}
hs.map(&:to_a).flatten(1).each{|v| h[v[0]] << v[1]}
#3
1
How's this?
这是如何?
def collect_values(hashes)
h = Hash.new{|h,k| h[k]=[]}
hashes.each_with_object(h) do |h, result|
h.each{ |k, v| result[k] << v }
end
end
Edit - Also possible with inject, but IMHO not as nice:
编辑——也可以通过注入,但IMHO没有那么好:
def collect_values( hashes )
h = Hash.new{|h,k| h[k]=[]}
hashes.inject(h) do |result, h|
h.each{ |k, v| result[k] << v }
result
end
end
#4
1
Same with some other answers using map(&:to_a).flatten(1)
. The problem is how to modify the values of the hash. I used the fact that arrays are mutable.
使用map(&:to_a).flatten(1)也一样。问题是如何修改散列的值。我利用了数组是可变的这一事实。
def collect_values a
a.map(&:to_a).flatten(1).group_by{|k, v| k}.
each_value{|v| v.map!{|k, v| v}}
end
#5
1
Facet's Enumerable#map_by comes in handy for these cases. This implementation will be no doubt slower than others, but modular and compact code is always easier to maintain:
Facet的可枚举的#map_by对于这些情况非常有用。这个实现无疑比其他的要慢,但是模块化和紧凑的代码总是更容易维护:
require 'facets'
hs.flat_map(&:to_a).map_by { |k, v| [k, v] }
#=> {:b=>[2, 5], :d=>[6], :c=>[4], :a=>[1, 3]
#6
1
I thought it might be interesting to compare the winner:
我认为比较获胜者可能会很有趣:
def phrogz2a(hashes)
{}.tap{ |r| hashes.each{ |h| h.each{ |k,v| (r[k]||=[]) << v } } }
end
with a slight variant:
轻微的变体:
def phrogz2ai(hashes)
Hash.new {|h,k| h[k]=[]}.tap {|r| hashes.each {|h| h.each {|k,v| r[k] << v}}}
end
because one can often employ either approach (typically to create an empty array or hash).
因为通常可以使用这两种方法(通常创建空数组或散列)。
Using Phrogz's benchmark code, here's how they compare here:
使用Phrogz的基准代码,以下是他们的比较:
user system total real
Phrogz 2a 0.440000 0.010000 0.450000 ( 0.444435)
Phrogz 2ai 0.580000 0.010000 0.590000 ( 0.580248)
#7
0
What about this one?
这一个怎么样?
hs.reduce({}, :merge)
shortest! But performance is pretty bad:
最短!但是表现很差:
user system total real
Phrogz 2a 0.240000 0.010000 0.250000 ( 0.247337)
Phrogz 2b 0.280000 0.000000 0.280000 ( 0.274985)
Glenn 1 0.290000 0.000000 0.290000 ( 0.290370)
Phrogz 1 0.310000 0.000000 0.310000 ( 0.315548)
Michael 1 0.360000 0.000000 0.360000 ( 0.356760)
Michael 2 0.360000 0.000000 0.360000 ( 0.360119)
Glenn 2 0.370000 0.000000 0.370000 ( 0.369354)
fl00r 0.390000 0.000000 0.390000 ( 0.385883)
sawa 0.410000 0.000000 0.410000 ( 0.408190)
Tokland 1 0.410000 0.000000 0.410000 ( 0.410097)
Tokland 2 0.490000 0.000000 0.490000 ( 0.497325)
Ich 1.410000 0.000000 1.410000 ( 1.413176) # <<-- new
Phrogz 3 1.760000 0.010000 1.770000 ( 1.762979)
#8
-2
[{'a' => 1}, {'b' => 2}, {'c' => 3}].reduce Hash.new, :merge