任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1757
A Simple Math Problem
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6621 Accepted Submission(s): 4071
Problem Description
Lele now is thinking about a simple function f(x).
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
Input
The problem contains mutiple test cases.Please process to the end of file.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
Output
For each case, output f(k) % m in one line.
Sample Input
10 9999
1 1 1 1 1 1 1 1 1 1
20 500
1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1
20 500
1 0 1 0 1 0 1 0 1 0
Sample Output
45
104
104
Author
linle
题意概括:
按照题目所给的递推式求解 f(N);
解题思路:
根据递推式构造矩阵乘法;
然后矩阵快速幂解决矩阵乘法;
Ac code:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#define LL long long
using namespace std;
const int N = ;
int Mod, K; struct mat
{
int m[][];
}base, tmp, ans; mat muti(mat a, mat b)
{
mat res;
memset(res.m, , sizeof(res.m));
for(int i = ; i <= N; i++)
for(int j = ; j <= N; j++){
if(a.m[i][j]){
for(int k = ; k <= N; k++){
res.m[i][k] = (res.m[i][k] + a.m[i][j] * b.m[j][k])%Mod;
}
}
}
return res;
} mat qpow(mat a, int n)
{
mat res;
memset(res.m, , sizeof(res.m));
for(int i = ; i <= N; i++) res.m[i][i] = 1LL;
while(n){
if(n&){
res = muti(res, a);
}
a = muti(a, a);
n>>=;
}
return res;
} int main()
{ while(~scanf("%d%d", &K, &Mod)){
memset(base.m, , sizeof(base.m));
for(int i = ; i < ; i++){
base.m[i][] = i;
} memset(tmp.m, , sizeof(tmp.m));
for(int i = ; i <= ; i++){
tmp.m[i][i+] = ;
}
for(int i = ; i >= ; i--){
scanf("%d", &tmp.m[][i]); //构造递推关系矩阵
base.m[][] += ((LL)(i-)*tmp.m[][i])%Mod;
}
//see see
// for(int i = 1; i <= 10; i++){
// for(int j = 1; j <= 10; j++){
// printf("%d ", tmp.m[i][j]);
// }
// puts("");
// } if(K <= ){
printf("%d\n", base.m[K][]);
}
else{
tmp = qpow(tmp, K-);
ans = muti(tmp, base);
// //see see
// for(int i = 1; i <= 10; i++){
// for(int j = 1; j <= 10; j++){
// printf("%d ", tmp.m[i][j]);
// }
// puts("");
// }
printf("%d\n", ans.m[][]%Mod);
}
}
return ;
}