本文实例讲述了Python实现的特征提取操作。分享给大家供大家参考,具体如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 21 10:57:29 2017
@author: 飘的心
"""
#过滤式特征选择
#根据方差进行选择,方差越小,代表该属性识别能力很差,可以剔除
from sklearn.feature_selection import VarianceThreshold
x = [[ 100 , 1 , 2 , 3 ],
[ 100 , 4 , 5 , 6 ],
[ 100 , 7 , 8 , 9 ],
[ 101 , 11 , 12 , 13 ]]
selector = VarianceThreshold( 1 ) #方差阈值值,
selector.fit(x)
selector.variances_ #展现属性的方差
selector.transform(x) #进行特征选择
selector.get_support( True ) #选择结果后,特征之前的索引
selector.inverse_transform(selector.transform(x)) #将特征选择后的结果还原成原始数据
#被剔除掉的数据,显示为0
#单变量特征选择
from sklearn.feature_selection import SelectKBest,f_classif
x = [[ 1 , 2 , 3 , 4 , 5 ],
[ 5 , 4 , 3 , 2 , 1 ],
[ 3 , 3 , 3 , 3 , 3 ],
[ 1 , 1 , 1 , 1 , 1 ]]
y = [ 0 , 1 , 0 , 1 ]
selector = SelectKBest(score_func = f_classif,k = 3 ) #选择3个特征,指标使用的是方差分析F值
selector.fit(x,y)
selector.scores_ #每一个特征的得分
selector.pvalues_
selector.get_support( True ) #如果为true,则返回被选出的特征下标,如果选择False,则
#返回的是一个布尔值组成的数组,该数组只是那些特征被选择
selector.transform(x)
#包裹时特征选择
from sklearn.feature_selection import RFE
from sklearn.svm import LinearSVC #选择svm作为评定算法
from sklearn.datasets import load_iris #加载数据集
iris = load_iris()
x = iris.data
y = iris.target
estimator = LinearSVC()
selector = RFE(estimator = estimator,n_features_to_select = 2 ) #选择2个特征
selector.fit(x,y)
selector.n_features_ #给出被选出的特征的数量
selector.support_ #给出了被选择特征的mask
selector.ranking_ #特征排名,被选出特征的排名为1
#注意:特征提取对于预测性能的提升没有必然的联系,接下来进行比较;
from sklearn.feature_selection import RFE
from sklearn.svm import LinearSVC
from sklearn import cross_validation
from sklearn.datasets import load_iris
#加载数据
iris = load_iris()
X = iris.data
y = iris.target
#特征提取
estimator = LinearSVC()
selector = RFE(estimator = estimator,n_features_to_select = 2 )
X_t = selector.fit_transform(X,y)
#切分测试集与验证集
x_train,x_test,y_train,y_test = cross_validation.train_test_split(X,y,
test_size = 0.25 ,random_state = 0 ,stratify = y)
x_train_t,x_test_t,y_train_t,y_test_t = cross_validation.train_test_split(X_t,y,
test_size = 0.25 ,random_state = 0 ,stratify = y)
clf = LinearSVC()
clf_t = LinearSVC()
clf.fit(x_train,y_train)
clf_t.fit(x_train_t,y_train_t)
print ( 'origin dataset test score:' ,clf.score(x_test,y_test))
#origin dataset test score: 0.973684210526
print ( 'selected Dataset:test score:' ,clf_t.score(x_test_t,y_test_t))
#selected Dataset:test score: 0.947368421053
import numpy as np
from sklearn.feature_selection import RFECV
from sklearn.svm import LinearSVC
from sklearn.datasets import load_iris
iris = load_iris()
x = iris.data
y = iris.target
estimator = LinearSVC()
selector = RFECV(estimator = estimator,cv = 3 )
selector.fit(x,y)
selector.n_features_
selector.support_
selector.ranking_
selector.grid_scores_
#嵌入式特征选择
import numpy as np
from sklearn.feature_selection import SelectFromModel
from sklearn.svm import LinearSVC
from sklearn.datasets import load_digits
digits = load_digits()
x = digits.data
y = digits.target
estimator = LinearSVC(penalty = 'l1' ,dual = False )
selector = SelectFromModel(estimator = estimator,threshold = 'mean' )
selector.fit(x,y)
selector.transform(x)
selector.threshold_
selector.get_support(indices = True )
#scikitlearn提供了Pipeline来讲多个学习器组成流水线,通常流水线的形式为:将数据标准化,
#--》特征提取的学习器————》执行预测的学习器,除了最后一个学习器之后,
#前面的所有学习器必须提供transform方法,该方法用于数据转化(如归一化、正则化、
#以及特征提取
#学习器流水线(pipeline)
from sklearn.svm import LinearSVC
from sklearn.datasets import load_digits
from sklearn import cross_validation
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
def test_Pipeline(data):
x_train,x_test,y_train,y_test = data
steps = [( 'linear_svm' ,LinearSVC(C = 1 ,penalty = 'l1' ,dual = False )),
( 'logisticregression' ,LogisticRegression(C = 1 ))]
pipeline = Pipeline(steps)
pipeline.fit(x_train,y_train)
print ( 'named steps' ,pipeline.named_steps)
print ( 'pipeline score' ,pipeline.score(x_test,y_test))
if __name__ = = '__main__' :
data = load_digits()
x = data.data
y = data.target
test_Pipeline(cross_validation.train_test_split(x,y,test_size = 0.25 ,
random_state = 0 ,stratify = y))
|
希望本文所述对大家Python程序设计有所帮助。
原文链接:https://blog.csdn.net/piaodexin/article/details/77452693