HDU 1024 Max Sum Plus Plus(DP的简单优化)

时间:2025-03-30 08:04:19
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^

Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
Sample Output
6
8
题意:给你一个序列n个数组成,然后让你在里面找到m个字子串(不能有交叉,也不能有连接 的情况),让这m个子串的和最大。
题解:一眼扫过去就是DP,划分问题,第j个选择或者不选, 选(是继续上一个子串还是重新开一个子串),不选(不考虑,所以需要维护一个当前的最大值(ans/tmax))
   最初的状态转移方程:d[i][j]=max(d[i][j-1],d[i-1][k])+num[j],其中k=i-1,i,...,j-1;(没有优化的话大概三重循环)
   数据给的很大,有两个方面的优化:时间和空间,
   优化:时间(选择k的那一重循环可以用空间换,用pre[i]来表示到i的时候(不包括num[i])的最大值),循环的时候更新一下,就可以不用循环k那一层了;
      空间:二维数组优化为一维数组,d[i][j]=max(d[i][j-1], pre[j-1])+num[j], 写出pre后明显可以直接去掉一个维度;
      优化后的状态转移方程式:d[j]=max(d[j-1],pre[j-1])+num[j]
反思:这题写的时候,初始方程可以正常的写出来的, 但是用个pre数组来直接去掉k的那一层循环是不会的,思维有点狭隘,一直就想着通过类似01背包的方法来优化, 而没有想到再开一个数组就解决了。
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std; const int INF=0x3f3f3f3f;
const int maxn=1e6+;
int f[maxn], pre[maxn], a[maxn]; int main()
{
//freopen("in.txt", "r", stdin);
int m,n;
while(cin>>m>>n)
{
for(int i=; i<=n; i++)
cin>>a[i]; memset(f, , sizeof(f));
memset(pre, , sizeof(pre)); int tmax;
for(int i=; i<=m; i++)
{
tmax=-INF;
for(int j=i; j<=n; j++)
{
f[j]=max(f[j-], pre[j-])+a[j];
pre[j-]=tmax; //注意pre的更新的顺序,pre[j-1]被使用后再更新pre[j-1]
tmax=max(tmax, f[j]);
}
}
cout<<tmax<<endl;
}
return ;
}