HDU--1060

时间:2025-03-24 18:37:43

Leftmost Digit

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 14696    Accepted Submission(s): 5660

Problem Description
Given a positive integer N, you should output the leftmost digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.

Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the leftmost digit of N^N.
Sample Input
2
3
4
Sample Output
2
2
Hint
In the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2.
In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2.
Author
Ignatius.L

description:求解N^N的最左边的数字。
解法:num=N^N,两边取对数可得num=10^(N*log10(N))。其中10的整数次方的最左边总是数字10的整数倍,而决定num最左边的因素为N*log10N的小数部分。由此可解!

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
using namespace std; int main()
{
int t;
cin >> t;
while (t--)
{
long long int num;
cin >> num;
double num1 = num * log10( double (num));
long long int num2 = (long long int) num1;
double num3 = num1 - num2;
num = (long long int) pow(10,num3);
cout << num<< endl;
}
return 0;
}

做不出本题数学是硬伤啊!!。。。。

相关文章