在我昨天做的一个bat中(自动按日期重命名文件名)涉及到这方面的问题
以前涉及到这里时就想别的办法替代过去,今天好好扒出来说说:
实现变量嵌套的2种方法:
1,使用call实现变量嵌套
变量嵌套:即在变量中嵌套变量,将变量的值作为另外一个变量的名字(或一部分名字)
这种用法很多语言都支持,如PHP的$$p,如C语言的**p二级指针,但在BAT中这是第一次涉及
如:(需要通过a输入10)
set a=1&set b1=10
call,echo %%b%a%%%
call 这里实际是对命令行进行重新组织扩展,先扩展%%b%a%%%里面的%a%,使%a%变成a的值1,再用call来扩展%b1%
2,也可以通过延迟环境变量扩展(setlocal EnableDelayedExpansion)来实现
如:
setlocal EnableDelayedExpansion
set a=1&set b1=10
echo !b%a%!
::也可以得到结果10
使用CALL实现变量嵌套替换:
使用的环境变量替换用法,即%PATH:str1=str2%,用 "str2" 代替扩展结果中的每个 "str1"
而str1本身也是个变量,如果直接写成echo %a:%b%=%,得到的结果会发生错误
如:
set a=12347set b=2
echo %a:%b%=%
我们是想把从a里面删除b变量的内容,即从a中删除2,想得到结果134,但是实际执行结果为%a:2=%
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAL4AAAA/CAIAAADR+uW3AAASNUlEQVR4nO1dXW/bxtJefkokLUu2FcVJCxTnbxVoihYoGjdtE6C9aP9Fr1qgQIOgqd04kRzLlGSKokiKokV9WLbjJC3QFv0t78XzerChRMXSsVsnh8+FQK7I2d3Z2dnZ3dkhK5fLn376KWNM0zT6ZYyJosgSIMuyLMv0sKqq9Bddr6ysMMYURclms6CGC7wiSZKu63jAMAzGGG4ZY4Ig0L/4C88nFUYQBHq9UCggEbkoioJ/GWPIXZIkXORyOUVReArIl57XdX1paQnXmUyGMba6uop319fX+SKBFVRaPEyJuOX5A7LFYpEyuhA+oGx8AYgU3qKWxS3fagAx5Ly4f//+xsaGYRj8m8iVqP/nP/8RRZFu8/k8O2un5eXlGO9QREgeyR9VnjF27do1XFA7qaqqqmomkwEp1A3vLi8vs5lyzBjLZrOCIBA15IVbFIZyBH08QHKmKIqmachUkqR8Po/WlSSJOsk777wzmS9xiSSSF0dqSzyGiqAuoFkqlVCvi+IDO5NIXdfxJDUNxB2s4BsaTDiPvpiChw8f3rt3D6Xs9XpRFO3v73uepyiKLMuCIPA5QXqoByMR5dN1Hen9ft91XcYY9VqwBqWE2DGOy0QHF6urq2haYj3PgiTg3Ww2K8sytUcul6Myx5QBSXkYhlRCNE+n09nb2xuNRvv7+3gXFXEc5/nz571eb29vjzoM1ZEx1m63fd/PZrOoaafT8Tyv1+uxMx1MmphUgiiKF8UHENzZ2en3+9VqlTFWKpWgukCwUCjwHZiYcHJy0mg0wjCs1Wrzic7PP//8zTffyLLcbDZbrZaiKKqqBkFg23aMy4ZhCIJAEgqmAzwHV1dXR6OR4ziSJGUyGfQDfuzgZVFRFFQMidTPIAGDwWBSr04FeEqcLZVK9JeqqiBOpKiR2u2267o0Tomi2Ov1Op2OYRiSJDmO0+128eTBwcHBwQHeHQ6H9XqdqAmCIMvyyclJr9cjplH7DQaDfr9PmVIJMYLzPLkQPrz33nuO43ieRwMlWoG0IBQw2kvTNL6Op6enjUbjPLn8PzY3N99//33HcU5PTynR87xOp4OqiqJo23YQBNAlgKqqlmUNh0PIaSaTgXSTXB8dHdVqNVxD7BhjUAPEIFQAiWAT5HJpaUkQhJ2dHd/3GWOCIMxgHImyoihQaSAryzKYRe+Cm0tLS6IottvtKIocx4FAEJ0oikzTREqv16vVapOd3nXdfr8vyzKGKlmWPc8rl8vlchltrKpqGIbgJxoSsggi0G0QGiReCB+onJVKZTAY4FoQBDQQ8YR+RVE0DMNxnGq1ipROp4NGPy/29vY2NjaiKGo2mygxCgEFiLq5rttut0ejEb1VLBZVVS2Xy+PxGFxAPfEv3n358qXruvl8HqWv1+udTqff76MX4pn19XUQD8PQsizK3bKsP//807Zt5Lu/vz+jCmB6GIaPHj06Pj4OggBDA2PMMAzP83zf933fsqy//vqrXC6TTdpsNqMooh4PXpPdEwQBP5xJkqRpmq7rrVYLbZnP5yVJ2t3ddRznxo0bYRhSmzHGfN/v9XrU6sScIAi63e5gMGg2mxfLB8MwRFEcDoe+749Go0ajMRwOdV2XJEkUxdFotLOzMxwOMYw6jsMYW1tbQ39bW1tzHGc4HM6gH8f333//7bffVqtVSBxKHBtlV1dXUX+ovuvXryN9bW3t8ePHR0dHuq6jQ5A1DQq+70NXRVEEtuq6bts2GFooFHZ3d23bRlN1u13oAHSR3d3dIAhompAEKiRNmo6OjjzPkyQJt9TJUIu1tTWq1JMnT8IwJDUgSZKqqmDl8fHx48eP2ZnSwm+tVvN9//j4GBRWVlZ++eWX58+f47ZerwdBAPqDwaDdbjcajdFo1Gw2VVV1XVcUxTAMm80mbB3Lsg4PDy+KDwTXdcmWQO6kbNCHqZ9QB8vlcltbW3t7e7H54GtQqVTu3Lnj+z6NeQDNAnBLkxTUIZ/Po68LgkBjvKZpZMdomsbXQRCETqfTbrdjQgnb4uDgADam7/tkqR0eHqJfspmWP3qzYRj1en0wGBwdHVUqlYODA7JvbNsOw9BxHMdxDg8PG40Gjaq///57pVJBv2Rnw6iu60EQNJtNDG1UWhqhYB+Ay4eHh61Wq9VqQZu6rruzs7O+vv706VPXdRVF8TwvCALP81zXBUuhdRg357oQPrCzMbff76M5rl27VqlUHMeBCHa73W632+l0bNuGCU9VGwwG/JByXmxvb3/yySdEC9l4ntdut+m20+mYphlFEU1ewGt0UMMwWq0WngeLNU3b2dmBmuFraxiGZVm8Vo+iyLIsslfYmboyDKPf75umqaoqvy4wFejNKD94R92ARJku+EkTP7rTspZpmlCKoihCLmO593q9brcbmxAtLy/btt1qtfC87/vValVVVVmWUTbeuMnlcqZpjsfji+VDJpPRNK1cLj979gwp4/E4CAJc81a5KIoz6ntePHz48M6dO5lMZm9vD7pXVdXBYNDr9UBdlmXbto+Pj+v1OuMW0Bg3XygWi+jxeL3T6ZAUQ08GQYDyMca63S4UtWEY1WqVODgajaIoYmfNXC6XoyhCwTAwTwUK2el0YJbmcrl2u21ZFhqJFIyiKDQwEYN6vR6UAZpEEIR+v+84DjRKs9lEf1AUxXXdKIoKhUIul7MsCyJC9MGHdrv9xx9/oDztdht2AxQJqQ3Hcf7++2/KHVr5QvhAY81wODRN8/r164IgNBqNarW6srJCVcZ8kFTA1PqeF5ubm/fu3cO1bdu//fab7/s0OVpeXqb+ur6+TrKSy+WQfbFYpETP86CrTdPEAygThv9Op9Ptdnd3dyE3UJWlUunp06eDwaDb7WJmKMsy2uPmzZvVarXZbEIiZwAyAZaZplksFjH+Il9N02jtAJkWCoVarfbs2TPYzp7n2ba9tramKMrW1hZGH9d1USoyMlqtlm3b5XIZ5Ue+1CSnp6eu61ar1Xq9jhHQNM3BYLC9vZ3L5XzfxyBSLBbL5TIEHbP3C+SDJEknJyeWZcmy7DgORlKYHFAz/DphUn1nZ/EKTNP88MMPY1ZYJpMh3RgbX1FVfhFZVVV+AdcwDKImyzJMIvTFXC4HExsixT/GGFMUpVgs8vNVxhm5s2tBs0JQJs1//fp1mqJPrsKRNUOrBjDpYktnfEUgptlsdnLxHS9S1kQEdSkUCsiLXqRML4oPsB9ofpDJZOj5bDZL9qWiKJSeVN9z4bvvvrt79y7jls6g0kVRpOEcwoE1DH4bhVf+oijS/Dyfz5M9RMWl5Qq+JpPLdJqmkTmiKArxNwn0oqIo/MYTb4QSE+lCVVXKiNqSX33hKcRMe2ppdANUKp/Pgw7fuqVSKTZuMs7m4G3wi+IDb8kxxmRZLhQKtOXCzhaHkHVSfc+L7e3tr776iiZQNOrzz9AtZF9VVVrLgdLm5YwGXZQ4m82iN4ByPp/HLT1G+39Uhtg+nK7rsxmHiQ8VkucUUeBXxhi3esvOFBJtV0mSlMvlIBArKyvY3OA3ZPhFwpgZTksbVBcCb1YjI5gdF8gHvmyTigRrKySjSfWdTf8V/Prrr7du3UJmqAZttZCI8A3DGFtaWppcAIitlsbmAjSi84mxHRnKS5ZlmCmo7RyVYcwwDDBF0zSs4DGOTTC/iK2UTpJEf03NVxAELA5BiaIP0Fo5yjy5zXTz5k1c0H4nNXBsk/K/5ENs7oJdPAy1WOPmuXSe+r4Gpmnevn2b6kP6nIrCryOho8QyIw1Mf5E4Y0RD7+E3kviVQ7wb09sAWoi92tFjoI16lIe2PGNmgaZpfAtlMhmacCFT2jmnAiNTkBVFET0KWy6MG5iQI3559wa8zu8AUO/ijZ6L4gMe4/UK7TTzoMSk+s6Bra2tzz77jK/SfJP7FP+zSEUnxYJIRSfFgkhFJ8WCSEUnxYJIRSfFgkhFJ8WCSEUnxYJIRSfFgkhFJ8WCSEUnxYJIRSfFgkhFJ8WCSEUnxYJIRSfFgkhFJ8WCuOz4OowLQMELZZKLE1EgZ0p4S/HnmPh/kwAXrZjzG7k7To3HQ95P56EzI54N47zQY7EZJuP94JY/iL6Iw96/gsuOr0ORXRjndB0LTAEQW8E7QRB0XUci3DoNw+CP8bJpbsg86GGKZABMjceDAlP/yWaz5OadRIclxLMhr1DGeV0mxfvhDyqwc3SJK4R/IL5OqVQCEb6lk9y5RVFEJArXdUEHb/FyhkZ9ra97LAWyiOvJeDyEmEN4Ep2keDa8XhFFkcJyJcX7icV4YAs4ev5buOz4OvxxLQpnpKpq0iESPFMoFJrN5v7+fiyMGSIK8E/OAB7GIRvGjcX0biweD93S8QDyKU6iMxnPBmG5WLLJGIv3A3kiD2g6czK7alcClx1fB7ygYYtXFVOPriFFkqQoihASC6e6eHOEnUVom+q5TRBF0XVd9AGUs9VqJcXj4V27wzCs1+vUN6bSSYpng4vDw0Mc/gXx8XicFO+HMba2tlar1XBoF/8iTspVx2XH1yHLdGdn58WLF+12++XLlxRkavLALHJEDJFaraYoSrVaxZl7GNqtVuvFixf379/3fX+G4gEdhJlBIz179gx0psbj4Y9zjMfjbreLh2fQmRrPBoZOv99vtVqo+NHREZ05n4z3g7O6YRi+fPkSzxwdHc0XIunfwmXH13EcR9d10zQ9z4Ntsbm5OeOYPjXhyclJGIZQPIjAdePGDVKHS0tLvV5vxvH62LndIAj4CrKJeDxsYm6laRp/aCtGhxCLZ2NZFp0UZoz1ej2cUU+K98Neta4ggomtdaXwz8TXiaLItm2EfhkMBhTQZDI4CGOsUCgIgvDkyRMK32fbNorn+36/30cb9/v92VGucC4Jb4EUHRmbjMeDdArDgIZH4lQ6LCGeje/7NAmPoghywNs3sXg/MAMwIjuOg84wI8jtFcJlx9cBporIjHRRFBHKCY2E2GyCICCqWS6Xy2QymN0k1YuMqtFohLGDX7KaGo+HliQwfIdhiEO1SXSmxrMBqWw2u7+/32q1YkGA5yrnVcdlx9dhyfFjpqbTahsChTLGdF0/ODhA7yyXyycnJ3h+OBy+1iag8LOMsYODA6rUZDweisKk6/rjx4/H4zHJ1lQ6M+LZlEqlIAiCIMCRcsuyXht8ZJL+7OevBC47vk6SOTwjrgxj7OTkBNZxLpczDAOmkiiK7777bq1Wc113PB5XKpUZ9UIBbNtWFAXGmeM4MFenxuNxXZfCDFI8dsMwZtCZGs8GIx1iKEG8LMuarR2T6F91XHZ8HZY8CU9Khw6nhmRnhiSKpGkaZTTX+kehUODPybNX4/FAG/GZJi3MEJ2keDaGYdBKNBamz1/IWDmvNC47vk7S0l9SOn/in70ahYQv0nmCP+ALFbSlgN+keDwAlncR2wAxY2fTmYxnw9PHHOq18j2V/huAy46vk7ThkJTOG4m03kir+Pl8PpPJIOW1ob4QMIVxC9k0zZmMx8MvSMaWi5LosIR4NjSIY1OFvarMzl/Oq45/IL5O0jZnUjqW2vh5Pj1Dq0e4nbGaTBFAqSR8hBf+MXIEAHRdp/HRMIwZdKbGs8E1KeDXqpBzlvMq4rLj68x2rphMpzGCD6bHBwpl3KbSjHrRcMPOFBu/AzUZj4eakChQyJypdFhCPBualvJsnLFOM4P+VUelUrl9+3Zsx458a87v1yIkf0/qbfNTSQH89NNPmJzDWFvYr4XkKfY9qbfQTyUF8OTJkw8++IBP4Rc0z+/XwhK+J/UW+qmkADY3N7/44gvY9vSZJPp3Lr8WMfl7Uuxt8lNJATx48ODzzz93XbfZbNKM17btef1akr4n9Rb6qaQAHj16tLGxgb1+jB2np6fYG5rLrwUQpn1Pir1lfiopgN3d3Y8//phx/igQhXn9WoSE70m9hX4qKYAHDx7cvXsXg0i324WegCiw+f1a2MT3pN5CP5UUQK1Wg9YZj8eNRoOGGzanX8u831d6g/1UUgA//PDDxsYGPoWKFM/z+v3+An4twvzfV3oj/VRSAKZp3rlzp9lsZjKZ1dVVQRDq9To+FTaXX8u831d6g/1UUgBbW1sfffQR3SqKQl/lYPP7tfw331d6Y/xUUgAPHz788ssv4WbLH6ZZwK9l3u8rval+KimAH3/88euvv6aNcYgILeKd369lge8rval+KimAvb29W7du0YlxyNDkwPFav5Z5v6/0BvuppGCMMfZ/6CaYkuaJSJAAAAAASUVORK5CYII=" alt="" />
系统先把%b%解释了出来,把得到结果再执行一次就是正确的我想要结果了,所以用到了call
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAALYAAAAiCAIAAAB9ZbQGAAAJ40lEQVR4nO1cWW/aXBMe7wsGspCorVRV/d29etWLKpXCUsAYsA14g+BAs6t3qfpLvotHGfl1sBvSXLzNx3MRmWE8Z86cOTNzFkKCIBCRJEmSJBGRaZpEpKqqruv0gEqlws9gqFar+GhZFn+1v79PGaiqCuZtIUlSrVbDA5qGMkX0FwT3FNZQVXVbCbIs8+uw7d7eXgl/kZ3L5TzWc9t2t+MXBMEwDEmSNE3L0g3DUBQlSxFFkYjAVq/Xs3Q0g+eDgwPDMEr0KwG/yA9oqIj+Ujg8PMSDKIqKouRMsRVg/ex4HxwclPAX2XmjnBI9t233qfxZDp40rDEPvKZpkAgeMGC0BEGQZVkQhJxZLcvCK1vBNE1MLPwVRbHRaJTQXxbc31wcfTpkWcbUJKK9vT0W+MR22c7lch7ruW272/HDS/AXrPv7+8gRcGeO6oqiiKKIiMQNIPjDaSzLggQQ/wSaprGncl4rof8h0Kl6vc5uLUnSEwf4MWAxDIMsyyUxqcjORXLK9Xx6u9vxZ7/IRTxN0wRBYG9g7O/vi6KYTdXoJNrjyPSMIVRVVVGUSqUCEwiCgHKniP6y4Kz8bOfIdfmJch7buVzOYz23bXcLfnjxer12HCcIgiiKFEXh8WC24+NjDE+lUuEIwV3Cw3K5jKIIcS9Xum6FJEls206SZDgcHh8f00PWLKK/CBzH+fXr1+np6fNKbAYct9FoyLJ8eHgoiqIsyzx/HqPIzkVyivTctt0t+DVNc113MBi8efOGiIbD4Wq14m/xJmdl+Fq73UZnQMyWjYvF4suXL7quZ+uG5yFN09FoRI+8rYj+hxAEwXXdIAjwsV6vP1t5SZI4GKMALBkqYKOdN8op0XPbdp/KP51Ofd/n79br9WQywfPx8XGn0wmCIAgCKA3PjaLo+vqaiA4PD5FrDMMAgyzLaZq6rsvMz4BpmoIgdLvdOI6RBLn1jfSXwmw2m81m9BD26VkuPp1OkyRhbcfj8W+FbLRziZyNem7b7hb8nuelaYpnLljgXNVqdTqdTiYT3/fBACmGYbiu67ouImTW9arVqiiK7XZ7sVjwys1xnNFoFMcxZj9nwdvb22azGUXRcrmkzHjgRZgsK7+IvhGKojiOMx6Pc+2W6BOGIXoaBAFUAtbrtW3bQRDAprlyLYcwDPv9PiJrq9W6uLigh2VgUX832rlIjiiKYRh6njcYDKbTaRRFsENJu/P5fDKZTKdTtDKfz8v585hMJp7nEdHR0RETc3skpmlqmgZVUKUi3MGXDcMwTfPdu3dgVlV1f39/Op3Gcazruu/7q9UKzsQhyjAMpAk4ZbPZnM/nMD2qNsMwwjAMwxAbNoIgFNGLhmoymURRhPiZpinPmCJ9KpUKJlYQBJIk/fPPP2dnZ6qqep7neR4y92KxaLfb2eXiY2C7gog8z4vjmB4ScVF/S+y8UQ4RBUEQhiF0WCwW/X5f1/US/o2lbgl/HlEUwXzAhw8fIAIv5GyRtY6qqsvlEtKBg4MDLMmSJBmPxyDGcdzpdJjn7du39BAAkDLu7u48z0OMNU0T8mVZ7vV6vV6PNwGL6AUjRdPpdDQadTqdyWTiuu7379+fog/ikyzLP3/+7PV6GA9MO1EUkySZzWZP2XKNouju7o4/Iudu7G+RnUvkeJ4XhiERWZaVpilmeBG/JElBEPi+H0VRFEW+72MOlMjPo9/vO47z8eNHIjIMo9/vn5yc4CvLslzXjeOYAyAshQbg/qvVKooizG/spIFCREdHR4ZhdLvd9XqNVRK7s67rURTB9ETk+36SJFlnNwwDCSW3S1tEf4xOp3N1dSXLsmmanBpUVS3SxzTNMAzX6zUoo9HI87xarbZarTqdDtyi1+udn5+Xt6tpGgIYPRShoJf0d6Odi+SYpmnb9mq1Qn5stVpJkoiiWMQPQ3FS41KhiH8DZFleLpefP3+GroPBwPf99+/fY9QHg8FwOER/JEmCWgcHB2gJ1u/3+9z5y8tLODX76fn5OSIhnq+urtAoxBKRIAhBECwWC9B5t4NrDihWRC/qV5IkmGpEtFqtfN9nHTbqQ0TD4dC2bcgcjUbwhlarFccxXOT6+nowGCiKUlKJN5vNJEnglBcXF0mSVCoVQRCK+ltk5yI5oijOZjMEwkajEQRBr9dTFKWInzLHJpjV+FjCnwey8o8fP1C/pGmaDXq8+8YUGIv3idFnZPT5fD6dTomIzw6Qej3Pg+Rms0kZj47jGD00TbPdbvMcQkk1HA6HwyFKrXL6RhiG0W63URuenp7y3kORPkmSDAYD5M1KpZIkieM4iqLoup6mabfbzRYlJbi5uYGVLMtqt9uj0Yj9qai/G+1cJGc8Hi8WC8uyms2mbdv39/dEZJpmSbvsHNnnEv4yaJrG5726ruPkBV+9ffuWK3/YNLeFqmkaDk2YjXM2ZgZ/lGUZzou/oNfrdX4RfahWqyy5nF4EaGhZFhqq1Wp8sPlYH/SU81eu4MiaT1XV7GbXY2CacnYTRRH8G/tbYuciOaDzeV55u3yOxuBuFsnfAMwMtjjeh0dnB4Mr7ZzJsotPcLKrAVALrfAhHDNkqwoOMDxCuaEqoj8GGx2qZju1UZ+sJnwIxedBoiiC57c7MRiG7JEnXizqb5Gdi+RkO46uoeAt4s9+zEoo4c8DqvOFjNw0Al0QBPgXl3j88OI3Nnb474LdvFqtZm+aMHidCXer1WqcO8t3k3b4u8Fnp9gBy4bBo6MjjH228KFMtSEIQvnVph1eCThacCDhndbsRhkR6brOu4SUcZ1dFHnNwGBnt89R/jQaDQx8dtOGeShT3vK7O7xOcB17e3ub2wa2bTsMw7Ozs1arhaN/Xdfr9TrfLk6SBMc/uyjymoGVz3w+dxyHHlIMKHwCjE3o3KL5/v7etm3spf72PsQOfzF6vd7NzY3rupPJBNfJcrtshmE4jsNb7JqmWZZl2/ZsNgvD0LbtXcX6f4HZbOb7fjbRoNTAAmc8Hs9mMw4Vrutiox1XHHZbI68cfL48HA5xjxK3Fojo8PDw06dP19fXZ2dnRKQoiqIoQRCMx2NZlqvV6snJCa6M7Lzk9SOO4/F4zEcVRGRZFq4bCoIwGAxwakxEYRje3Nw4jmPb9vn5+Ww2w92tHV4tcIa0XC5x4ZSIBEHI/gpGUZRer5ckCW7fAPitB+6n0L/PHXZ4ncCtJF3XcSOBiNI0xfDjRghyDZa7fEmn2+2GYfiCv1TY4b8I3KQaj8etVuv29vbr1698ej6fzy8vLyeTCQoO+veFhqurqyRJrq+vv337ttsXec3gJS6Si2EY2eNpwLIsLHZwg43TEN9FeMYv6Hf4m5C7AoKb+ERUq9Wy/wqAMpccRVGED8Fddi6yww477LBDAf4HWZzQp19XHdoAAAAASUVORK5CYII=" alt="" />
终于得到了正确的结果。(在bat文件中要双写外层百分号:echo %%a:%b%=%%)
实现延缓环境变量嵌套替换:
在上所述都是在这两个变量本身都可以直接使用%来输出值,而我的程序中涉及的变量不能使用%来输出,就麻烦了
我的程序里面本身就已经开启了延缓环境变量扩展,并且,
使用到的两个变量都必须使用“!变量!”双叹号才能使用,即涉及的两个变量都在for的复合语句中发生更改
所以不能使用!b%a%!或是%b!a!%的方法来实现,只能使用call了
我的程序中涉及变量filesrc和datatime,需要把filesrc中所有datatime都删掉,并在最前面加上datatime
换言之就是让最终结果只有一个datatime的值
如果按照一般的写法,写成
set file=!datatime!-!filesrc:!datatime!-=!
会得到错误结果:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAVkAAAATCAIAAAC1JOkyAAAOKElEQVR4nO1b2W7jxhJt7pt2LzOZIEC+PUAGSRzZkrVQNClRFEWKsqzFE8cJAgT5lftwoHM72ubJeZHrQaDIZnVtXV1VXRSO4wghhBCu6wohdF3nLy9s28ZfwzAURTFN0zAM3hFC4I5pmpqmqaqKR5ZlCSE0TVMUhfjxi1fkKTiLqqoYr2maEEJRlHK5LIQ4TSfeAgZN02zbxnjOgmvQBsygUFEUz/M4pl6vEyEJOMivzJoQAkSeHg+C8Uq1WuWkEB0HkzyOcRzHtm0QD6lSF5QbRAEVELOmacCJp5VKRX70H+hl3354gUeWZXHwQX4xqWEYIJ4YaGZUARk/K/1iPOkhwSfs/ytwcXHBayiVU+JRo9FoNBq4UyqV8AvsmqZRnYBvv/0WxFmWhQtaA9DWajXQTQXvYCiVSpZl7ZO+T6cQolqtQgSWZVHBxKOqquM49BR49N133/EVjKzX66BKpuEEv7AwvI5f27Yh+mPyub6+BkJqqFargQxFUSgoVVVN04TxyWIxDKNcLlPrpFbTNFiVsgVZ4ABVVT3Pk63trfVyzH50XQcBuq5jdtu26Vn2+d1hRGwdHGxdURTQTK93nvqVGaF3Fofs/xRcXl4Su6Io4I2biexTAeBBVVVKGWDbdrVaJfN4Xd6OKpUKHlFkuJBJrNVqmBrWxtlVVT1BpxDCdV1uenThHz9+JCUwTcMwdvYobBSySr7//ntZlMf4JVDxIO/EeC4wVVW5JPAW+N3ZZLCovvnmGxk/BnN/k+/LknRd1zAM7C244KPr62u88tZ6OWg/4t97ppCEf5BfPKVnwRjKVrZ7XJ+bfsXWa1CqhmHAKRy0/4M8/gtkxuRwEdN/+vTJtm3XdU3T3BFBo9HYETfUr6oqJsZuUKlUII77+/s8z8MwxF9IFkHUZrP59ddfiaFcLo9Go+l0miRJURTH6JSdvWEYND7QU6vVGo1GqVRqNpvr9RruCUjoMjabze3tbZZllUoF9oTdb39GmV+IW476rq6uiHx/PLbHcrnMLcL3/fF4zEf0ZYhsd9IZEGYYBu/ApBaLRZIkhmFYloWp5bAQfyEKmEiSJO12+z/QizhiP9zibNumxTuOc4xfEO953j53DHA8z5tMJt1ut16vn5t+ZQeBuBiYj9m/OA1gplaraZpGCfJix4sLqWpgWdaPP/5I6XieR4YhSjhI3KlUKkEQbDYb27bH4/FisaAUILuiKDabDeal7oUQaZr2+/1jdGIYoiBKB5Klqd3e3i4WiyzLut2u2BYUZNZ+++23JElAMERJgz7Br6wMObc8Np55EwjebDYPDw+yqE3TBBLoG5jr9TqyRFgJBkO87XZ7OBxOp1PYHEDTNCxamQW81W63l8vlarUajUZvrZcT9iMr7urqitZ/kF/QSV5c17UsC+wrioKL+/v7KIpms9nd3d156pexGHSBZXjM/k8BYwnmgYgb6WOq1apt28ydWEYKgmCxWDAoElIQIlsAr+fz+Ww22yeAJRAAUCmKUq1WDcPI83wymRyjExdXV1fAs+/5dF1frVY3Nzd5nhdFQUaIxDTNTqcTxzGw0a26rot94CC/0Ae0y8zzxHg5l0PGCFOgxHRdZ3RHaxaS45d3ABC5Xq/X6/VPP/0Evj5+/CgXloCKWZvrulEUjUaju7u7NE3fWi/H7EcIcX19Lcf2oO0Ev/V6vVqtwjcFQTAajXq9nhx9PD4+Zlk2mUzyPD83/QopqmJ1UI4ddux/X8v/B2L3PG8+n//yyy+LxQL+HjQ5jtPv96Moou6h7OVyGYbhZDIZDoeTySTLssvLSyElk0II1n5s265UKp1OJ89zJhrYSTzPQ8yZpmmSJFCSTGEYhnEcH6MT1RGQmqbp77///vnz55eXl9ls9vnzZ2Sz0+l0Pp/3+336V1VVy+VyURTT6XQwGGRZNp1O8aharSLgTJIkCIJj/DabzVKpBE3PZrPhcCivqP3xmBpeP8/zn3/+OUmSPM+FEK7rqqq6WCx++OGHwWDwxx9/xHEcxzFLoYvF4vn5udVqTadTYMBvt9vNsiwIgjiOqcqLiwt5E6NGPM9LkqTX683n8/l8/tZ6OW0/QohsC5Zl+b5/jN+dcw1oCr4Mk7qu6/t+s9mEtM9Nv/J5SlEUnU7nr7/+GgwGp+3/KzCZTDqdDnxnURRxHCPn73a7YElRlCiKVquV2NYzgiCYz+dCKm/UajUQR6dFWsMwLIrC9/3BYIC3eFhF40AgB7ZheZ7nDYfDLMuO0TkcDimmnUQReRqMKY5jOfq1LKvT6YRhiHVSFEUYhiyGs+haFMUxfrmpsq6u63q/3z8hH/ngx3XdOI7H4zHLbKPR6OnpSQiBheT7Pgj2fR/sa5o2mUwGgwEkg4R/NptxYdi2bRjGYDAYj8dZliFFTJIkjmMIQdf1KIqA9q31csx+hsOhqqpAkuc51JckyTF+gyBAAshSNBVN34StbzQageaz0q+8JJG5UCPH7P8rgDwqDMM8z1nYwD4/nU7b7fZoNHp9fe12u6RM07T1ej0cDuV4b+fclaLBxWaziaJo/9QEGMIwhFBY9kRYgWwHdzRNC4IAbjjP8zRNSUClUkGgGIZhmqZRFHHXsixrMBhMp1P8hX1gOkVRLMuiX/c8DyoZjUZpmo5GIywD13Udx2k2m+PxmG4O2Eql0tPTU7/fz/M8iqJj43lcTINeLBa+79MugyCIosjzvIeHB9M0Z7NZGIa6rqdpGsfxdDrN8xxj8Dqq9K1W66vOHkEsLobDIfC/tV5Go5EQwjTNUqk0GAweHx/Fv0vxQog///yz1+sNBgPbtrMsu7+/h1harZau6ztFMrGtun2Vr3PTr9gWHYfDIUKVJElO2P8poLOHkiApZndFUTw/P8snqJ8+fcKjm5ubbreL8xV5mQmpOQSSgovyfR9bBI5ShRC2bSOPEkI8Pj7e3d0RA+mG1Hjn5eWl1WrthI7yQRGOcFHRxR0MBtmsLM5ms36/D2MaDod5nmMNZFmGko+mafA1rMH8888/2Mcsy2J2d3t72+v1LMuqVquDweDYeCEdc+D4LUkSxpyNRuP19bXdbtfrdQSEWZa1Wi3XdR8eHoCEZ2Y8/xdCXF5eflXBcivBzqH62+kFZxByJ0KSJGmacr8tl8t3d3ebzYbeBHkvQm7qDqLDtiSEgKEjtj/I1xnql2d2PBUW2xMNXMv2fwpQ4xFCLJdLhoLj8bjVagF1GIa4j4QTnIDo9Xq92WzAWJqmMCzHcWTFUGcQPasXeCSfCDJ8ZSpLRaZpSluczWag4eLiIgiC4XCI2pXjOJVKZae1CzLVdR1JF0MYy7JWq1Ucx/BZDw8P/X4fyyBJEuSWqqrmec79RAhxe3u7XC6FEL7vw116npfn+d9//w20LPnuj396emL3CzxvGIbYBCCuOI4Rc00mE8uy+v3+6+urEGKz2YzHY5RF5/M5Fq3YFgWbzeaXL19O6BdzsRYwHo85/k31gmvHcR4fHxEj4BUsAIacURTJ3ZCWZd3d3U2nU8yVJEmSJIrUybdcLufzeZqmJ/g6K/0CVFWl85KbwY7Z/ylE8Bw4W3p6eoIQydtqtQqCIEmSMAwZ82C+Xq9XFEWr1QKqDx8+4KlpmtQWRmLz6XQ6EB+1q+v6crksiqLb7aLIMRgMUB0Zj8fz+bwoijRN2+328/Mz6Lm/v394eJhMJr7vAxXzGp6EwUrYoPbly5dOp8OECs5iMpm02+1ms1mr1fI8932/UqlcXl7e39+zQLVarVh2UlV1NptFUQRKGFTf3NwgQzYM48R4Lptms7lYLF5eXsbjcRzHUH8Yhuv1mkrBloUp4jher9e+7/f7fZ51QxQo753WL1VQqVSSJEHG/tZ6kTuCe73eZrNBLY1CKIoiiqLxeMysHqGEbdtYosC8XyQT2wD2GF9npV8ub5o9u5UP2v8pQ2ErXqPRkAvFfE3ZdqGzE5NsX15ewm7ktj8heSb2IIttHLVzCngQ5Dhz5ybOgcS28ctxHM/zbNtmJAKQwyq5PwQIEb/glUajQYcqI5GLkZiXU+MRZMWId4eA/fHskFVVVeYdsyMExR3P82Sd4T42avSc7AuKGfhBkHcMjn9rvaiqKteudtqWYaCyfHa6oWVzgjA5L2OWg3yJ89Ov2IoXfQoIZ/ho3/5Pwc5Mnuex/0kuaQpJo2g+xfT7gQcOUYSkD1yzH5OdSGxM4GmWLAKxFWW5XNY0jUZAenag0WjI/WSNRgMzYjrUsQ6KA94UEqzX63LzJnkhBoqFNUtyLfO+M568U9oyR4QPHz6AYNrTviJZw0NuKSTHvQ/a9gMN9oPSiN9UL3iR3yCIbaGbVKEkwTFALvftVqvVnVSZZTnHcY7xdW76VRTFcZyd/mtx3P6P4fk/BRcXF4z8ZadimiYLEiSIi19u4QJB/FiNuwQHsw0DY3bsTzYU3D/Yr0ZrgMSr1arM3s7mI7+y43Ety8InZTu9SayvwMXCQNklwcHK9pMYtuLz6OjYeJo1KJGF7HkerFNuXBNSxxvmwn2KhTubXDE6CDKPjuPg71vrRWxDDIqI08kLXqaB7cnYjfAW6xcg7+rqiovtIF+As9KvPBGqnjLXB+3/MMiulIc0pmmapkl+PM+ja+eL3BmEEPV6fT8IJEHycQs45Fef+y0xQuqNEf+OcGCdHGZtv4mWnzJggR2w5Y5hjrwS5JxoR1Kkmc2h+wTLX2ewCfTEeHvvu1RZqriGKaBRT96ZZe3yIwJu1CfUrG8/It5JLMV/pRch5Yxyc16pVEJjIjZe+bhxv00YQKr4ncI+X+epX7mRkZMetP9jeN7hHd7hHd7hHd7hHd7hHd7hHXbgf0fBtpD5dsffAAAAAElFTkSuQmCC" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAMEAAAAWCAIAAAD2G29cAAAINUlEQVRoge1ZSXPbsA6mNmtzZGc9dPrzO9M0TdPEshVttjZbkR3HzjJJl1unf+Qdvhaj54iM1Xkz72KcKAgCQPAjAFKMMSZJkiRJjLGNMWOs1+thoCgKY8w0TTzu7+8TU1VVMG3bBmdvb48xZhiGLMv/wG9rlzjw/ODggL1FPD08u418gf+NZBgGBt1ulzEmFoZm27bhIXnSVh4xIdMY1Jd4e+LihGYiy3J9zBizLAuPlmVJkqTreqfTqSuFGHSRsKZpJKDrelt+W7uqqsqyLEkSwsfaBKiuR2C3kS/wv5EIhUdHR+xV0BoJmutzr8N9S/lGpIrh20gCnHBJUZSNlQPpug7Ik5f9fp849e3iOA6Nt+e3tYtpYPHwoaqqgljz9PDs8vjiefEIGYj9N/IaiQQURcFY0zRBNhLI27YN6Ou6Xt9s/zMit0zTrI/JLdu2sSTHx8cU/V6v1+/3MX69mwmqpmm25be1i+SMarJ9BnqtR2C3kS/wn0cAum3bsixjIQV5C4R5dTqdNyV58pTq6tVHnP8aSYCTTe00xiRN00Qcyaf6FjcMA2KO42CznpycQAml7rb8tnaJiTGtEy8WPD08uzw+z38BIR/Qo/gTwNSyLMorYhLIK4pCQIfAm9oaSdA3M2S512MYrg/IuU6ng7DW9wdQeXBwADHE9x/4reyiO67PZ5ua0ug/zy6Pz/O/kWgKVHYPDw8F8lh4xtje3h61ZYL+QyCPR1p1QWkWEw8nTFXVMAzDMEQbQWPG2NPT0+fPn+/v74fDITkhSdLLy8v5+floNPr27dvp6en+/j6cw+LFcUxW0T+25beyGwRBmqZpmoZh+PT0NJ/PB4OBIPML/G+0K+Dz/BeY7na7y+VyOp2GYcje6pHfVLiNPB1TfN/3fR8427Iy1kmAE8YYy/M8z/ON8Xw+Pzs7wy6fTqfT6RQCcRyPx2NZltGIjMfjm5sbspRlGR5VVa07uj2/rd3ZbDYej0nndDpNkkSQ/Hl6eHZ5fPG8GomSZZIkVVWxt1LC8fGx67qoQShAdERvJY9WOsuyLMvQXIv95FEjTv7QdDotigK2i6JAmDzPu7u7Y4ypqloUxWQygTdZlkHANM3FYuH7/vX1ta7rcRxnWTYej8uyZLULm7b8tnajKHp5ecFEbNu+urq6v78XBEKgB55YlhXHcRAEcInnD89/SZJQQTZadXCwqHEck5P18xT7Wx9lWVZVlVxlfzOHrutt5WGinvCoESYwQRX1AGgB63UT40ac/KFOp+P7Psa+72NzdLtdSZL6/f7e3t5gMFgul/BjsVhcXl6enJz4vj8ej1erFfTClSzLoiiCJG27Vvy2dvG20+nAh6qqhsNhr9eTOMTTkyRJkiRw7Pn5+eLiAmmf5w/Pf1qY4+Pj+pI4jpMkSZqms9msLEuURRz1b29vsyxLkmSxWNCijMfjMAzTNH14eFgul8AuqJW8oihpmiZJ8vz87HkegIL9kCTJdDq9ublBKMDvdDrQQ4jEWY+Hkz/kOA6aeU3TFEXZ6Elvb29nsxn7m3hd153P55IkzedzYDOKIsJyURS0m2kOrfj/YBcOS5IURREVVplDPD29Xi9N0zzPi6K4vLwsimLjnmnDH57/vu9jj7qu63ne79+/z8/PwT8/P0dZGQ6Ho9Ho/fv3+JAWoyxL13W73a6u64ZhhGFYhw7u39vK0xSqqsJbXGokSYII3N7e2rYdBMFsNlMUJY7joigwQcyF1RJVM04oZdU7bTCPjo6qqsqyjNwyDGM+n6/X67OzsyiK3r17NxgMKKc5jjMYDFarFR4p37Tlt7XLGNM0LY5j4gj6IbEexlgYhtPplGoEzx+e//SnhdpbwzAsy7q/v8eaMcbW6zVyHvJQEASr1Wo8Ho9Go1+/fpGVLMvKsjRN07IsQAHL31ZeURTTNNM0xW6RJEnTtCzLXNc1TRMomUwmGCRJEoZhWZY3NzdZlqGOMyFO/hBqgSzLhPH9/f3T09M0TfF4eHiInDwYDMIwROBkWV4sFrCNmI5GI8/zcPNhGAbFent+W7tYhqIokCTY3zO2yiGeHlVVu90uYuq6Lv144vkjmFc9p1KUv3z5giZUluX1eg2FiqKQ55ZlhWF4eXlJaTXLMs/zCI64mG0rj4BIkvTx48eqqhAuxAF12fM827bv7u5wVJzNZhubqn5T/xonjP3tsOrnfjBd183zHLXw+/fvVAhfXl4QC0gOh0M6mDDGJpMJThyU6Nry29oFjDzPu7i4cBwHUaMS/poEelRV/fDhw2QyQaCRUXj+8PxntU4I+QDoTNP058+f+DBJkk+fPmGl8zyHA4ZhoEEBX1XVOI7X67WmaWdnZ4+Pj9DZVp4Q//j4CJRgxZ+fn3ErAURGUXR1dXVwcOB5Hqpzv99H6ybGCau/tiwLGwiPy+USvVUURcPhEJYQyslksl6v4zim/gPXD6vVCkfrPM8Ra9M02/Lb2sUUFovFfD7H5qBjUSMJ9CyXy/V6je4SHQCucxr94fnPaj/FNq4EgyBYLBZXV1eO40RRVFUV2vwgCFzXfXh4YIzhSIh8JstyEASTyaQsS2AUZ4VW8rIsx3FclmUQBHme//jxA1MYDoe+7wNhvV6vqiqULdM0v379OpvNrq+vUftoFo04YRQsaiAwoAgCcRT917cLdHEOPiaDPVpH7vb8tnZlWa6/UlUVOhMOCfQQk06mb/rz2n+KJDWz+JzgjmVDviSjZAKP9QtluhOq/8DZXr7ex9DnmqbVtW0sYr0WYxb0h6QRJzva0Y52tKMd7WhHO9rRjna0o/8v/QcixMHivW+EOQAAAABJRU5ErkJggg==" alt="" />
从上面的实验得出的结论,(如果datatime为a)应该得到结果为“a-!filesrc:a-=!”,但是实际结果缺不是这样的。。。。。。。
我认识是叹号变量标识符配对错误。(而使用%就可以,从上述实验就可以看出来)
前面没事,后面会进行这样配对:!filesrc:!datatime!-=!
即寻找变量名为“filesrc:”和变量名为“-=”的值,都找不到,所以直接输出datatime
这句代码即使加上了call,依然不能解决问题
最终解决方案
经过反复实验最终解决方法是:
call set file=!datatime!-%%filesrc:!datatime!-=%%
测试:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAYMAAAAVCAIAAAArThWvAAAPaklEQVR4nO1cSXPbxhJu7AAJbgolxXHsHPLXUyqVZVnhCgLEQmwEV5GSokqVL67yL3mHr9gZU6KeKSu5iH1wgaPBTG/T2zRMtCeoqmqaJhFJkmQYBhE1m038SVEUXdc1TSMizFEUBa/wMxHJsqzr+r77AjRNwzrVapWIgMAukCQJk3VdPzo6wgMRvX37VpwmIsO0MLHPwP/RffHK0dERHhRFkSSJXymXy3jgF59B717zZVlm0r4T9qXLMAysj72IyLIsIiqVSg8xoX9fLnsBc4Z5aJomSAMysixDapjwCuW7Cx6VO1YGH1RVhSa8DDCRj1KLjS3LYmxM0/xBXQH2sizXajWMPL0a/lqtVsG74+NjXkTTNF3Xf/rpJ4yUSqVSqSTqB22E/Qz8H92XHyRJwsqYBhywkaZpom7tS+++8xuNBt7SNI3JfCm62NwoiiIuDt6Wy2U+zyLy/6pc9gXbth8edd5IRAAPr0q+u2CX3GkjPvH1vQzlTrBtm/8lIsMwLMuyLKtSqWCzRx3Xs6FSqdCGGDywjB8FWF8ID5yVZRk/gRKWYmeLOXAFJEhlX/x37ctGGYOYwK6S/Yyu69Dsfenddz7PBKiqujXyInSVSiUe34pr8Iqu64ZhYM6/KpdngK7r2N22bZxPWZZBrGmalUpFVVUgAFa8Qvnugody590VRcGzpmk/FBkxlmAo3BHbIxFg/hHTiq7gR2IzRVFUVcVqiqLASD8KsiyzmrIPoU2YxqEm/mV9whwxfdgX/137MvAgnEa9Xscg+wcxAP5+evedD4f57t2775TFvnQxxx6GFTzzv5TLviDaOEmSWCKcwtDmWNK3x/6VyHfXOk/InTb2FO7ne7B6CjjkoY0T47iaiEqlElycKBvgLctytVr9EQxABnP29PT06fmSJDUaDewoy/Kj5pKI3rx5Q5vgecvHwhXvi/+ufW3bxlKGYTQaDTHfxnO9XhcH96V33/kP0eZE40XoYl6Vy2WORuv1Ophcr9fx1lbOwvDictkLwAoOvohI13UuDPGxRBKA59cm313wqNxhf0ulEsdELwCWZdm2jZT+9PT07Ozsy5cvcRx//vyZNqpDRLPZzHXd1Wp1cXEhcu15qLAfwM9ff/2ViOBwHgXWDyJ69+4dHnzfT9M0iqKTkxMiqtVqvGy3243jGLjZtl2v1zudTpIk++K/a1/f97cGMXkwGHz9+vXy8nKrjrsvvfvO933/9vaWiEzTZIqeyNv3pYuIxBKPqL66rjNicN1JkvzbcnkeVCoVHMJms8nJI+/y888/E5Esy8vl8hXKdxc8KndFUcABDmVKpdL3VK92AmyQOALygiBot9usQ7Sp8wdBMBwOMSIWsJ8HCEfhLYkojuOn53Pxn4hub2/zPCei8Xjc7/d5jmmapmne3d21Wi3RtYLdz8P/4b55nkMztv4qSZLv+0mS4GetVhMd1770fv/8LMtYyWij6P+3gvj9dPEhQYyMwgoJQT5Xgtbr9dXVFf0ncvl+wBESC1iMs2ma1WoVZujk5OTq6iqKotcm312wS+6Ah7XCHwVJkhC8cYkrjuMgCGiTpnEy7DjOer3GW2zCnpHPsy5Clcvl8mw2G41GT78FM4ygOgzDIAg45kTBzzAM9jN8mwM3QkS6rj8P/4f7BkEQhiEPih4yjmOoFNduTdPcl95954PAWq0GfMRSyEvRxffczWbzzz//HAwG3NvR7Xb5QsdxnKIo/hu57AVcEmKWDofDoiiiKCIhPFmtVp7nvUL57oJdcj8+Pu50Oqj6A71vskVIkfVAUZQ0TX3fj6IoTVMiUlUVGrNerz3P833/+voak0UDGQTBaDTCBmKdPI7joihooyXMUFYaHpnNZsPhME3T+/t7XtY0zaIowjD0PA98B/ZxHN/c3PT7/SiKrq6u5vM5xrmhSdwCjU5gK22ExNPm8/loNNqFf5IkwJ9JDoIASpAkCbdOGIbhOE4YhnEcu66bJAnir1qtFscxssLlcklCuS5N08FgkOd5p9OZTqfsfpMk8X0/jmNoPEqzs9ms0+mkaQoWzedzRikMwzRNd80visLzvKIokMiYppkkSb/fT5IE/AT+k8mk1+tFUdTv9/M8L4pC13XIHcj3er3xeIxjoKqqruue58Vx7Hlep9NBkkVCHxkHKXhI09TzPIwMBoMgCDjxWS6XCIVeRC6IlXh3TdOiKBqNRmAIVzCjKHIcBxq+WCz4SOu6PhqNJpNJEASs59jRNE3XdfM8z7KMBJjP5xDBq5IvdwZhxLKsKIqGwyHCwzzPwzC0LCsMw16vh04Cx3EmkwnW2ap5EQk3XGDier3udrsoPIdhOB6PH0Z0cRynaQrrCGIqlUocx7PZrFQqqaoqlvQ9zwMHAbjvEAM2rJBlGQfb5+fny+VS0zRJktI0vbi4QKvVYDDIsow91YcPH6CLKC6AL1tRaKPRwHO73V4sFuPxGNE+LC9X1EDUo/i7rttut4nItm1JkubzOX4SURAErVYL69fr9Wq1itoZbQ4VX3ayrluWBVZDfcHDLMvG47Fpmow2W1sx/P7777/TNN0qeWJTJuHhfHoAqO96nue6LmJpaDZMJ8KTq6srLOV5Hg5evV73ff/8/JwdO+8oFn1wxoIgSNP05uZmOp32ej1wG0JPkoRTFU3TPn78OBqN5vP5C8rl7u7OcRzDMGRZdhwHBgIu1nVdCOX9+/fwtbqut9vt4XCIQ7JcLjudDm1MGIwRt1yy15QkybIszjSn0+lrk6/jOMg6XdelTSgDhnC0CHahyJ3nOTxEtVoFW/jYEvOUn23bvry8HI/H4gTgIctynudJkiyXy+FwCP+Gg4eN4fnFF6FM8/kcpDJ+omkTrwbb7Xae56qqcvOIbduu60KoFxcX19fXrMRE9OXLF8SNvAIoB8KiuYV1iKKIBYkRthrNZvMJ/KfTKfeMDgaDOI6Xy2WWZWEYzudzDicHgwHc7GKx6Ha7cGtHR0e2bTuO0+/3y+UycDNNs9vtgi2apk2nU66PWJYFAY9Go+vra9d1dV0/Pj42TfPs7GwymXC1jxUUtd5d8xVF+e2330CmeO8Jz0+b3KfT6XQ6naOjI0g2TdPRaCRJ0v39/XA4zPPc933P875+/cr8KZVKWZYNBgMwB3zAs9hvIl7BFEUxHA7Fy28cACb/x+Xied5gMID1QWtvr9ebzWYkNBlihSiKiqKASnz+/Bm6hNBDLGdwOICTg7PEp4aXem3ylSSJrwLBGWQDi8ViOp22Wq3pdMpLjUYj7CveOW6XnNCvBZ9DRKvVKs/zSqWCd2C9JEmCFQTfgyCAfeXk07KsXq+XpqmiKLZti3u0Wi3IGJe1bI8gYMwE0+Ezz8/Pr6+vuVkJwaSmaRxGcZYXhmG326VNVLXVaalpGodImDCZTKAQWFxV1UajwU2Yu/DvdDpZlgFDwzBmsxmsodjpX6lU8MA2FEzn62oSmmKw3f39fafTAXt93w/DUNO0arWa5/mHDx8wjtyTX0TozowC529vb3EGnphP3/obpEWe53GdpdlsLpdLhK44tEEQ4CB9+vTpr7/+wjT+gECMWTRNK5VKnPArioIDz18JYLxarfq+z/JijVRVFVHPC8qFr8z5MOu6XhTFH3/88ebNG9M0NU0zTXMymSD84VpnuVzGLR5tWre5LAIOB0HQ6/Wwkdi4e3R09Drly8DVK/zkVNE0zdFohFQG5aFyuSyatn9ALBqdnp62220ONGCDsfp4PIaRK5VKSZIMBoO3b9+yWUH4x8k295hJkpRlGdfeaWPaOGzh+MjzvNVqRUS//PJLu93u9/v4a7fb5RA0CAIxXuv1eovFQpKk4XCYZRmbKtggngYLaFlWnufj8Zg7I3jC77//Dgk9in9RFDC7UGvf97k8MR6PR6PRVpuWqqrcJi9JEjBZLBaLxULkAMJjNO8NBgMk1UTUbrdvbm4wc7lcMu2NRiPLMihTlmX9fl9RlHq9PhwOGe1H52uaFobhbDaDsLi1LE3TVqvFCoerz3q9Dg7f3NxADabTaRRFaNdAwYIp1XWdg3Mc462WP7HxPwiCfr+PkvOnT58mkwl0QNf1fr/PlZ0XkYt4CFEhQvVwNps5jsPru647HA5xBcaccRyHnTnsTrPZrFQqOOqz2awoCo7R+Es0qOJrky+SZU5I2QHw62Ayy+X6+hoZdK1Ww+RHusA4BqFNijsej4Erd75mWbZYLFqt1vv376+urrgACY6EYei67v39PUiVZfnjx49IDpGy3t3dYT5kz50gjA10KwiC8/NztpeWZc3n88lkkmUZfFG1WgW7VVVFeW8ymbD34+STGQT2dTodz/O63S7rGffdu64bhuEu/MMwvLy8TJIkiiLbtmu12tnZ2f39PV/NstUTAyJFUeAlbNuGPWX3RZtYcr1e9/v9LMtUVc3zvNVqQZDD4dBxHLis1Wol1mXzPI/jeLVaiV8e+b7PKfDD+d1u9+7uTuwMnEwmKLeD24jhi6KAtySiRqPR6/WKokClH1kzYhBMQMAvSdJ4PAYTDMPgFn7+F/oK5RFV/O7uDsFpvV5HzTVJkpeSy3q9jqJIvIPHxVa/32c3Ztv2aDTK83y1Wl1dXXFeT5vsCeHGVpmCHb5494JoHVnna5MvM43DQwgOFTEMxnGMRjDLspIkgRUWFeMfwMuIV+nbkKlcLiOHqlQqW8VzmEPTNLlTVpZl/hAE/6JkSJtEjMfFXWCVwBH8Fe2YW1VtwNbHR/RtMejk5ETM8hgMw4Cbajabot+AYsmyjJ9P4C9JErbGOtjdNE32+bZtgyL8ia0hcgoR1S3PDxz4o1CWJV9MiO+ii4TjcHEXPDw6n1mEb4jEMJ4LwLgY4nHxFd6I+zYYsJR4rYvWDaAhfhUlfofBaONF8UP2F5ELgD0Tx6c8wlTzInzlzMzErQiXq1ij+LszlhQ0ll6ffPEuf1/BuInNhshw6dvYB1hhr+2YaFdnKt7ZCl/pW5+wRerDD/QhPBYGWxzxKoFZgxFuSxe/RWIADfV6HZO5cVOcw68waVtc3vqojz+je4g/k8lhp1iOFdtJHwJjJdpZ0SLTA/eytT5kCTzFNlk+BluyeDifBFXmgwGJ8L0nT+NPOvF14pZ6cWYkvg7qFOG/f2GoVqtbZIIPtm3zfNYNwI/LxTAM8WNOABYEgVs8FPflGpN4nrlLg4TvB0CL2FJHr0++opXBM/fQiMcNgYho6WATvqe/6QAHOMABDnCAAxzgAAc4wAEOcIADHOAABzjAAQ5wgP8c/gdcs3aKCfkAmwAAAABJRU5ErkJggg==" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAiIAAAAWCAIAAAByomDvAAATRklEQVR4nO1dyW4bx9Y+PZLNmZQS2xkukEWQh8qwSBZxnAABMu3yHAGyyTKKIUvi1M1udrNntjhasuU4NpBVXuRffJcHZYqURf/2vbpAn4XQrO6uU3Xqqz5DnSrRZ599Vi6XS6USEZVKJUVRiEhVVSIyDAOFsiwT0d7eHm5JkoQH8FfTNL5+6623iIjfJSJJkogI1RJRsVgkIlSIF0UWuq7jyUKhwG8Vi0XcxU9d18vlMt6i3QlV8etoNsplWUZr0WyU8DPg3mw28QB+lkolNBVUKBR2Ld+VLwsHbZYkiWW7kbbxJSKIkYg0TdN1fU0ma3yvaOc2kiRJfJ6vXyNpmqYoiqIojKVtxANNK+ChC6+9SWvEE4GIZFlmmW/D4TbiGYeR4sIcz5Tj+ebj+eeff+Zr3MNzeA1aAdRoNMTqFEXhwcYQfvTRR7glSVK1WuVXMB7lcpnbpCgKeH344Ydi42glMgYK3xUVmyzL0IjiM9cnUfNVKhVJkrgeTdMMwzAMQxxmPL82hLIso48kqMlXKN+Vb61WwwW0PlrOgr1MV/M1DIOna6VSuYLvFe3cxpcvxOur39qJ1r5HV3+eiKhcLtfrdbHkPzAtiUjTtDVGGK8rcLitHr4WO5LjmSnH82tszzZ6FTx/8sknEDG0KD73zWYTT9y5c6fZbHKlqKjRaPBIK4piWRauTdPEu4wSaIU1tc+qRawT3FEtI09RlEaj4XkePynL8ksB8VICx7UpjUJWwtxytEFUzoqiMJQVRWG7RjTQrl/+anwZXtc0qTa2B0aAyJdWMr/Md1s7r8P9TRBbVYVCgcUimlprBD9bNHuv+Ja9RtJ1HYgtl8sQ2v7+Pm5txOE2ggOBqgzDkGV57TOa4znH8xtv5Svj+aeffiKiLMtGo5FpmnEcHx0dFQqFXq93fn7e7/d//fXX+XzuOM54PI6iiDuTpinGdblcSpJkGIbruqwhSqUS+AFAnuctl8vBYJCm6eHhoeM43W73/Pzctu3xeDyZTGzbPjs7++OPP+hFeem6PhgMisUiBMqxNcyxV9DeLAWE/qrVKsZSlmXcqlar0Ha6rqN+5tJoNETzgcVdKBREQOxU/gp8QeVymf050em8TBv58sXbb79NRIqilMtlFsVlvle0cyOJjC4zfS3Ets7Gn5cJ4IQ0gJ/X256NhKm4t7eHSQgzTjT01nC4jYB/Xdf5y8ijsLGeHM85nt8EvSKeP/30U7g5kiQByn///TcJzumTJ09I8EBxS1XVhw8fgl8URSj3fd+yrPl8PhqNgiCYTqfs6LAD2Gg0gKGLiwtaTR7W3nfu3EFzYbhh1KMo6vf7aZqapvngwYOHDx8OBoMoiq7G4jaCdIrF4uVouNhH/omxLJfLIjtVVSHEWq3Gb0Hiu5bvyhd3xXWpd95554r+XsG3Wq0Co+Kc38Z3WzuvoDcay+bg6safl6lYLHI3IRMxuP9GiW2vSqUCSZbL5StwuI3QbASX4P1Tjuccz/8TeP7hhx9wMR6Picj3fRIUaZqma9JkA2EwGKBkNpsRkaIoQRAUi0WEzkBAQKVSwRBCA7mum6bpcDj0PM80Tdd1syxzXXftLTT32bNnkiRxFgDmWJIkePLVAmjlcnkNjqItUK/XUS5qY4QsDMMQXUIAt9Vq8QPigtb1y3fly8PMbh+XbKSNfNkoQ99VVRVtw418r2jnRhLdf/H6dREjGx186bQXH5Ak6bJB/SaIDXlxgRoX23C4jd59911cYLh1XeeVjBzPOZ5vNJ4//vhjfq7T6XCgU9d13/cHg0Ecx2ma9nq98XjMpockSUEQtFotXddN01RV1XEcTgAbDofz+ZxbxvUvl0suGY1GeBh3Hz16BKZA2N7enizLvCpDK93TarWOj4+hgV5NrOjCcDiEdlRVNcuybreLZiRJYtu2bdvQZJqmSZLUbDYPDg6ePn3a7/cPDw///PNPDDAr4+l0SsKo71S+K182ytI0nc1mLNIraFt7MA8h8N9//x1VbeO7rZ3bmAISjuOoqipev7S116diseh5XhAEQRB4nne1d8sfkfl8HscxRPEfIExL13Vt23ZdN47jQqHAhtdlHF5RFaTXbDZFMeZ4zvH8P4Dn77//fjgchmGYJEmSJKZpRlEEoadpimeABkTAgBgSVs+yLIM+4PAxh9HEhTgiGo/HjuNMp1PHcSaTyXA4HI1Gvu9HUTQYDNj5hapjwY3HY3CUJGk4HLI98spLXoZh2LbtOI6maZqmmaaZZRkRhWFo2zaMRNu2wzBc6yCcKs/zRN9rsVjg7hpGr1++K19JkrIsa7fbXMN1DKvLfHl+Zll2fn5uWRaGYBvfbe3cRlEUMRLE69dCnDkyHA6Hw6EYQdpI6PVkMoG/3ul04jh+aTLPayGsFqiqOplMRCFsw+FG4pUDDA0+phj3HM8oyfF8c/H8zTff8HMohXaRJKnf7xcKBQTTiEgcBqh0y7IWi4VlWYPBwHGcs7Mzx3FM01wzSaCWFUXhNonVYvLEcQzvBJoJC0Kc1gzXh19BtoOYFLC2KHd1aoCmaUEQxHGMoZrNZlEUaZrW7/eDIMBQhWGI8SMi3/dZ58VxHMcxwoPdbtc0zUePHt2/fx8uPDq7U/mufInIdd0gCJDgIeZ3kjDlDMPg2KNlWf1+f7lcQmGzlYQXB4PBdDqFqXE1Xxh9siwrioLVsjWm7FDDWvR9n/1Rz/N83xe/CDxkYly+WCziGU4p5KEUd1wxFxImvCRJaBseEANQqqpCXOPxGN2UZRn4kVbZroi2o35kRqEB4AtY4pp7wRu5RDmIFi5ucZvDMDw9PeWSjTgkwVpH/cgr4zjS8+fPDw4OkiThxKocz3gmxzPdSDwTEX399de4aDQajuPQao9ktVqFzh+NRsViUVEUfOtpFRVlr0XTNAww5x70+31xexStjC94WLRa2sEzSDc8Pj5GnQwa3um5v78vSdJiseA+c8/hWrEXhQo5W/Fq4gUeaC/wxVhWKpUHDx5cXFwAxMi+e//998MwRHYD3m21WliRYv0HqO1UvitfVVVd18XoMoiZoP7FEtS/t7d3fHwMf5T30CmKYtv2ZDKhVfSgUChs4ytJEhIC0ff5fN7pdHh9dW3IMCLD4TDLMixWZ1k2HA7RQkVR4jjGhyCOY7yi67phGKPRaDAYZFnGc56Ioijyfb/f7wNCQRDw2oCmafDCNU1j5CBJpNvtPn36NE1TcaIiDvzBBx+gpNVqoSpfIBKmDaAuzjdN08Iw7Pf7hmGwj46p7rpuGIbHx8dJkiyXyzAMpdWOMUzy6XSKD5w4Rms4JKKTk5PHjx9jaObz+WQysSyr3W4jrHR4ePj48ePRaHRyciJafjmeczzfTDwTEX3xxRf1eh16Yrlciktk0+m0Uqk4joMctZOTE1U4AoCI8Onnh3k8eGGGm4Wf3W43jmPEH6Moms1mjuN4njcej8/OzniZTpIkUXXHcQyFp6oqRI/dmkh4IyHrZu16G6EXUPgAFsJ0vC91PB5jeMAOThutnKokSYIgYJvL933btmk1tXYt35UvESF6m2VZGIbQ9NjbxOPCKe3iFofJZIIFMDZGJpMJZkWlUgnDkH3QjXwZgpjJ/X6f18YODw//+ecf0zS73W6SJHEcIwTqui5jLkkS13XRU0RKMViTySTLMuBkMpnw81EUdTodnuePHj0yTRNeeafTwacEFIah+LU1DCOO4yiK0DzXddELVVVhXvm+3263p9MpQx1RXFwjqIvrNSxJwgb1i4uLdruNALTjOPjMLRaLMAxVVeVsmtFoJKYkmaZp2zavR27DITsu/CLML5SPx2N8ifi7kOOZS3I8083DMxHRvXv32DfEGCNJo1KpQF2jV/V6HZ41dEa1Wq1UKtjmIkmSruu9Xg8V3r59W/T9ufPIpAaw0ERN09asFXbx0O4oip4+fXp8fDwejz3PS9P0t99+e/78eafT8X1fFU7EAWLWrK2NhMkgeouQhWEYuHV0dBRFkbE6aAfrckmSwABpNBpRFLFj12g0kLe9ptuuX74r31qtZpomr1jyQpooaoYRLlqtVqlUarfbvV6PQ8DVatX3fRhonufZtn14eIiFx4184aROp9NSqTQYDBaLBaYWmgpGvFELRtN8Puegv+u6MD4wM8MwDIJAHEHDMMIwdBzn2bNnsKHOz8+5L7Zt+76PJBTXdTFzkPmKWDb/1HW93+8Ph0NN09DUMAwZ7gcHB1mWcYMrlYosy7Ztw5omotPTU9u2eXuWpmlIT2K5YWMgESE+4Ps+y3k4HOIzh48aQIs+YkKNRiMOoG/DIS9LNJtNlgyjZW9vDxsJUKJpWo7nHM83Gc//pm+//RYtaDabYi4yZEGrHDASfBSW/nQ65TkwmUw0TUPCcRzH3HP0EHFkbL86Ojqq1+tYBwKS2JvDOmeSJJ7nQaVjjY7rYdae5/EREcVisVQqZVmWZZmIkitIURQ8JgaC4QtzxsF7772H8iRJLMtKkgThxG63G4Yhz4HRaARPVpKkarW6a/mufIkILiAEMplMTNPkML2u62wxYeBv375NRIVCAUYcfmqrQ5B4QMfjseu6+MZt48t2Fqyeg4MD8YQoFiMmnq7raZoC4oB+mqYQAuahqqpBEKDCUqlUqVTa7fbR0RHahuRdTdMw2WDqon68zo0XF2NROBqNLMu6desWEaVpiugEgtdnZ2cMcg6Ob5yWPBVZsLSKJ2+clrquL5fLTqdDRJZlFQoF5LZwPERV1W63+0IkYQsOb926tRb1VRRFFU4zw8PiOnmOZ8rxfFPxTER09+5dXsxAAJHHuFqtQpuhHH6QKBROJKjX6+ymNZtNvMVhVsYZRkjTNARVkWd9ebMrI7her7uuizAaCV55o9FYLBbXWYDZSHDIODShqipKfN/HElG1WnUcx7IstG08HrPjiWw3OLn/+te/aBWxJWHr8q7lu/I1TXMymezv76uqOhgMYN6uHQoH6YmeomVZGKO1RUg444PB4Pnz5yjfxnc2m9m2jWnf7/fRC2zRUlWVG8DfhTRN2+12rVar1WpYWqBVWtFkMoF1Ak8c5Z7nPXnyBG1GbJ37cnFx0ev1IBY0mw/TEzNzUHhxccFO82KxSJKEx3o6nYIdL1nT9iADJuFsNoMhLGY2Xg4yEFGWZUEQSJKEcA3iKsjRB1Zns9nZ2Rl3YRsO+SfMdvxkB33tJNkr6snxjPIcz7j+b+L53r176urETG4cHxXDK1oYe1RRqVQgBbi3tVoNLYMsWA+JqdxYEAPX6XSqKApMA0nItafVdhlgBQ93Oh0xm4C1JdQsp6IVi0Wsd+Humru9jcQtCIqijMfj5XJp27ZlWbPZDOOHOOHx8fFoNIJ6x7olEQ0GA3i+4/F4OByapskQv375K/BVVTVN019++QX4ppXWh2XH3Wepnp6ePn782HXd2WyGVHcSTr8moiAIJpOJ4zhJkmzji0G/f/++aZo44kFkQcJs53OAgIF+v4/ohCScIBvHcRiG8MqV1TmqRGRZ1unpaRAEiFyjcD6fW5aF9FN5dUYIKEmSNE3TNOVICxEhvkpErVYL2VDAz+npqe/7QRAg9AEwb1sy1VeHheOkJdM0OSCwcckUGZw8X4jo2bNn7XYbQj45OXny5MmDBw9M0zw9PRVbu4ZD4Hx/f//yeV+IVPBjlxfMczzneL5peP43IdMMmys5QwyEvkE61Wq11+v5vs/OBxxMRVHQSVmWh8MhdANu2bZdq9XY5lJV1fO8KIq4BYZhYJsP3gIjcaQVRZlOp6ZpIsrJ+3t83w/DkK0njDdcYFk43Hsj8aqpWCj+VISDn3mqi2dLo1BdnRXNfWHfeafyXfmyiBqNBmrDYdWFQsE0zcVi0el00jQdjUYQiJjiIq22HzG4eSP0mpQ28iUhaEmCLudvn5gByJ3lDEDuu2ihX3bk8aSyOm1I5I4axMRNevHEXPb3+RVMHvHjy1kk4iuXE0DFBuvCSWIkQFR5MQEUPxVFYRAahsFZKvRiLulLcYiecjoQmIopnSLTHM85nsVXbhyeP//880ajIUkSrxQRURRFyBDnzuPC8zzRh+31eliSQclff/3FUpNlGUecaZqGDA3LsmRZ5kAnd0/XdewXXS6XvPcVfZNludvtwmndVp5TTjnllNONprt37+KC9RXSFaAMxTN8OJWtUCgEQdDr9TiQxWE4pKWnaep5nud5onPDbo2onLmQg5trJJob1ynPKaeccsrpZtGPP/5Iq8/9mksOb6NUKkGdiOEsflJcvxL/yxA7H7yQQyt902q1xDPylNU/uWFXlH+CC5zobeVvUDQ55ZRTTjn9/+mrr77CBefDYTsL9taKQTMEFnGgDa0ifYqirB2neufOHRLSTkj4l8+iVuAtV8iBplUWID+gaRo0kPTi/23dVp5TTjnllNNNpC+//JJe9FTEpTxeTLu8qiZJknh6j3i9dig3bnHSGzbwi0ual9OaC4UCnJtrlueUU0455XRD6bvvviMiWZZrtRqvmoj/ZVrcqI88Y5ycw5qJ73JMTCzHRlN4SMyU/+caERUKBdYZ9XqdN13Ca0E5Nq9uLH/d8sgpp5xyyul10v8BrzsjWx1dvfAAAAAASUVORK5CYII=" alt="" />
实现了变量嵌套替换。
先将原始文件名中的datatime删除,再在前面加上datatime,而不是一味的累加,实现只有一个datatime)
但是从理论上来讲,filesrc在for中也发生变化,是不能使用%来标示变量的,但是使用call配合%%却没有任何错误
百思不得其解,只能先了解这么用好了